

Gst-Analytics

Daniel Morin

Collabora

October 7, 2024

Presentation Outline

Analytics pipeline

Why would we use GStreamer for analytics pipeline

New and improved tools for analytics pipeline

Tensor Negotiation and Auto-plugging analytics elements



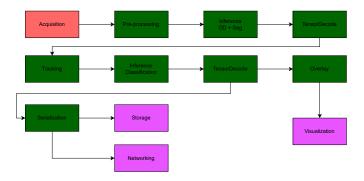
An analytics pipeline is process that transform data into insights.

An analytics pipeline is process that transform data into insights. Analytics pipeline examples

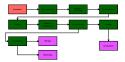
 Identifying unhealthy crops in a vertical farm.

An analytics pipeline is process that transform data into insights. Analytics pipeline examples

Locating a person in an open area.


An analytics pipeline is process that transform data into insights. Analytics pipeline examples

- Identifying unhealthy strawberry in a vertical farm.
- Locating a person in a large area.
- ML-based video compression.
- ML-based Dubbing
- Virtual privacy wall.


. . .

Complex pipelines with multiple components interacting to archive the end goal.

Other analytics pipeline components

Synthesize media from analysis results (Inference)

Presentation Outline

Analytics pipeline

Why would we use GStreamer for analytics pipeline

New and improved tools for analytics pipeline

Tensor Negotiation and Auto-plugging analytics elements

► Has over 800 elements ready to use.

▶ It has over 800 elements ready to use.

Very efficient

- It has over 800 elements ready to use.
- Very efficient
- It has plenty of accelerated elements

- It has over 800 elements ready to use
- Very efficient
- It has plenty of accelerated elements
- It excel at networking

- It has over 800 elements ready to use
- Very efficient
- It has plenty of accelerated elements
- It excel at networking
- A growing analytics support

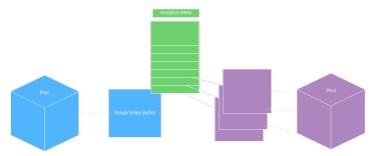
- It has over 800 elements ready to use.
- Very efficient
- It has plenty of accelerated elements
- It excel at networking
- A growing analytics support
- It's been around for a long time and still thriving

But most importantly is not just a bag of tools you get to bring home.

It is the entire wheelhouse, tool included.

Presentation Outline

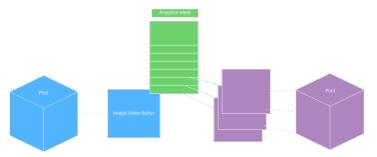
Analytics pipeline


Why would we use GStreamer for analytics pipeline

New and improved tools for analytics pipeline

Tensor Negotiation and Auto-plugging analytics elements

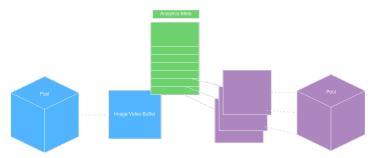
Analytics-meta



What's new in analytics-meta

Analytics-Meta Manage Lifeline of other gobject

Analytics-meta



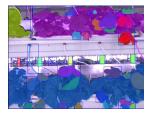
What's new in analytics-meta

- Analytics-Meta Manage Lifeline of other gobject
- Segmentation Analytics-Meta

Analytics-meta

What's new in analytics-meta

- Analytics-Meta Manage Lifeline of other gobject
- Segmentation Analytics-Meta
- Tensor Analytics-Meta


ObjectDetectionOverlay

ObjectDetectionOverlay

Fast-SAM/YoloV8-Seg tensor decoder

- ObjectDetectionOverlay
- Fast-SAM/YoloV8-Seg tensor decoder
- Segmentation Overlay

- ObjectDetectionOverlay
- Fast-SAM/YoloV8-Seg tensor decoder
- Segmentation-Overlay
- ClassificationTensorDecoder

O PyTorch

- ObjectDetectionOverlay
- Fast-SAM/YoloV8-Seg tensor decoder
- Segmentation-Overlay
- ClassificationTensorDecoder
- PytorchInference

- ObjectDetectionOverlay
- Fast-SAM/YoloV8-Seg tensor decoder
- Segmentation-Overlay
- ClassificationTensorDecoder
- PyTorchInference
- TFLiteInference

- ObjectDetectionOverlay
- Fast-SAM/YoloV8-Seg tensor decoder
- Segmentation-Overlay
- ClassificationTensorDecoder
- PyTorchInference
- TFLiteInference
- TensorDecodeBin (Prototype)

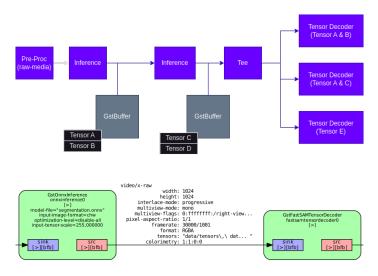
Improved analytics element

OnnxInference

Sinkpad capabilities based on model

Presentation Outline

Analytics pipeline


Why would we use GStreamer for analytics pipeline

New and improved tools for analytics pipeline

Tensor Negotiation and Auto-plugging analytics elements

COLLABORA

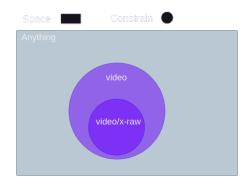
Tensors Constrain During Capabilities Negotiation

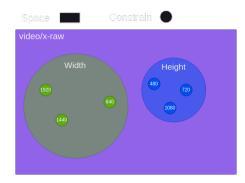


Ореі

With this capability which media can be accepted?

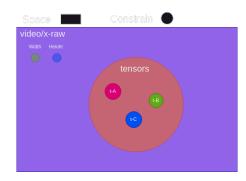
1 ""





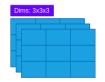
Quick Caps Review

1 "video/x-raw"


CO COLLABORA Quick Caps Review

Quick Caps Review

- 1 video/x-raw
- 2 width=1920
- $3 \quad height = 1080$
- 4 tensor=(GstCaps)[...]



Quick Tensor Review

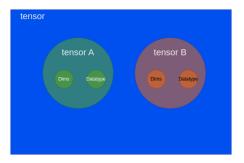
Generic tensor properties

Datatype:
u/int8
u/int16
u/int32
float16
float32

Quick Tensor Review

Model specific tensor property

Dims: 3x4 Datatype=float32

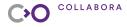

Obj-1	x1	y1	w1	h1
Obj-2	x2			h2
Obj-3	xЗ			h3

Dims: 3x4 Datatype=float32

Obj-1	x1	y1	x2	y2
Obj-2	x2		x2	y2
Obj-3	xЗ		x3	уЗ

Tensors Constrains In Capabilities

 $1 \, {
m tensor} \, / \, {
m strided}$,


2 dims=(uint)
$$<$$
37,21504 $>$,

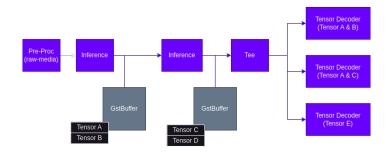
3 type=(string)float32,

Tensors Constrains In Capabilities

```
1
   data=(structure)
2
      tensors,
3
        Gst. Model. FastSAM. Segmentation. Masks=(structure)
4
          tensor/strided,
5
            dims=(uint)<37,21504>,
6
            type=(string)float32,
7
        Gst. Model. FastSAM. Segmentation. Logits = (structure)
8
          tensor/strided,
9
            dims=(uint)<32,256,256>,
10
            type=(string)float32.
```

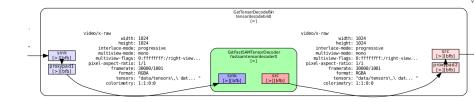

Tensors Constrains In Capabilities

```
tensors=(GstCaps)
 1
 2
3
       data/tensors,
         model-name=(string)fastsam,
 4
5
         batch-size=(uint)1,
         data=(structure)
6
           tensors.
7
             Gst. Model.FastSAM.Segmentation.Masks=(structure)
8
                tensor/strided .
9
                  dims=(uint)<37,21504>,
10
                  type=(string)float32,
11
                  dims-order=(string)col;,
12
             Gst. Model. FastSAM. Segmentation. Logits=(structure)
13
                tensor/strided,
                  dims=(uint)<32,256,256>,
14
15
                  type=(string)float32,
16
                  dims-order=(string)col;;,
```



Tensors Constrain In Capabilities

Inference element extract tensors information and expose it on capabilities.

```
1
     caps = video/x-raw.
 2
       width=(int)1024,
 3
       height=(int)1024,
 4
       format=(string)RGBA.
 5
       tensors=(GstCaps)[
6
         data/tensors ,
7
           model-name=(string)fastsam,
8
           batch-size=(uint)1,
9
           data=(structure)
10
             tensors,
                Gst. Model. FastSAM. Segmentation. Masks=(structure)
11
12
                  tensor/strided ,
13
                    dims=(uint)<1,37,21504>,
                    type=(string)float32,
14
                    dims-order=(string)col;,
15
               Gst. Model. FastSAM. Segmentation. Logits=(structure)
16
                  tensor/strided.
17
                    dims=(uint)<1,32,256.256>.
18
19
                    type=(string)float32,
20
                    dims-order=(string)col;;,
```



Tensors Constrains On Analytics Pipeline

Auto-plugging Tensor Decoder Prototype

TensorDecodeBin

- Lookup element registry for "Klass == TensorDecoder"
- Query accept-caps and select if accepted
- Sort selected tensor decoders based on their rank

Choose highest rank compatible tensor-decoder Open First

Thanks! Q & A

