
io_uring for DRM
Liviu Dudau

Arm Ltd



Who am I

• Kernel contributor for about 10 years

• Maintainer for Arm Ltd display drivers for the last 8 years

• Now involved with Panthor kernel driver

• Maintainer for the Mali CSF firmware in linux-firmware

• Interfacing with community for Arm' GPU software team

• Attending 2nd XDC in Montreal (wave)



What problem are you trying to solve?

• Modern GPUs want to move job submission outside the kernel

• Mesa's Gallium strongly assumes that the kernel is in charge of
submitting jobs

• Vulkan implementations would really like to do the submission
from user space

• Performance can be gained from allowing user space to submit
jobs directly to the HW or firmware

• Synchronization between all three sides is harder than just doing
everything in the kernel



What if we can have the cake and eat it?

• There is a mechanism in the kernel for doing asynchronous
submission of jobs

• Allows for a mixed world where user space is in charge of
creating the jobs

• Leaves the kernel to do the low level work of talking to the
hardware and fetching the result of the command execution

• Should offer some of the benefits of doing most of the work in
user space and all the drawbacks of accepting unchecked user
commands

• io_uring to rule them all!



Why io_uring?
• Allows us to decouple the job submission in user space from actual submission to
hardware

• We avoid paying the context switch cost for small submissions where we don't
care that much about the job state

• We can sanity check the job before actual submission (TBD)

• We can mix direct kernel and user space submission in the same app, based on
performance needs rather than startup flags

• crazy idea: JIT switching between sending jobs one by one to the kernel vs
batching them in user space

• Job submission to hardware stays the same

• Fence signalling stays in the kernel

• Implementing io_uring at the drm_ level means all upstream drivers gain support
for user space submissions



Quick recap on io_uring
• User space has access to a submission queue
and a completion queue

• Jobs added to the submission queue can be
executed immediately by the kernel or a
kthread can be started after a number of
submissions

• User space reads from the completion queue
to find out the result of the submission

• Kernel thread runs submission jobs in order,
but they can complete in any order

• Not very different fromwhat AMD has
proposed for their user space submission

Image by Donald Hunter



What am I proposing?

• Add support for io_uring in the DRM subsystem

• Work gets handed over to the kernel drivers via a submission
queue that wraps an actual GPU job submission

• The submission queue item only contains pointers to buffers
and fences, so it should eliminate kernel copies of the
submission

• Rest of the DRM submission path stays the same as now

• When job finishes we create a completion item that gets added
to the io_uring's completion queue



io_uring for DRM (cont)

• The io_uring stays at the DRM framework level, so it should be
usable by all GPU kernel drivers

• We might need to understand specific details about each GPU
job to be able to check the submission, or we can call the driver
to do the check (like drm_atomic_check() for display drivers)

• We can filter out requests that don't make sense in the DRM
context



What's the catch?

• io_uring can potentially allow for some "interesting" features that
are hard to control (pass a framebuffer that is actually a network
socket or a file)

• App needs more permissions/capabilities to be able to use the
io_uring buffers

• Feature is completely disabled in ChromeOS and disabled for
apps in Android since 2023

• Not sure about the mapping with drm_scheduler (1:1, 1:N)



Request for feedback
• Is this a good idea?

• Does anyone want it?

• Should we have only one kthread per FD or one per
drm_scheduler?

• If io_uring is not acceptable, can we have a restricted version of
it? AMD's proposed user mode submission has a pretty similar
structure

• Should we restrict the IOCTLs to just DRM ones, or allow for
"creative" freedom?

• Rust bindings?



Thanks!


