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Who am |

+ Kernel contributor for about 10 years

+ Maintainer for Arm Ltd display drivers for the last 8 years
- Now involved with Panthor kernel driver

+ Maintainer for the Mali CSF firmware in linux-firmware

» Interfacing with community for Arm’' GPU software team
- Attending 2nd XDC in Montreal (wave)



What problem are you trying to solve?

» Modern GPUs want to move job submission outside the kernel

+ Mesa's Gallium strongly assumes that the kernel is in charge of
submitting jobs

+ Vulkan implementations would really like to do the submission
from user space

- Performance can be gained from allowing user space to submit
jobs directly to the HW or firmware

» Synchronization between all three sides is harder than just doing
everything in the kernel



What if we can have the cake and eat it?

 There is a mechanism in the kernel for doing asynchronous
submission of jobs

- Allows for a mixed world where user space is in charge of
creating the jobs

+ Leaves the kernel to do the low level work of talking to the
hardware and fetching the result of the command execution

- Should offer some of the benefits of doing most of the work in
user space and all the drawbacks of accepting unchecked user
commands

» jo_uring to rule them all!



Why io_uring?

- Allows us to decouple the job submission in user space from actual submission to
hardware

- We avoid paying the context switch cost for small submissions where we don't
care that much about the job state

- We can sanity check the job before actual submission (TBD)

- We can mix direct kernel and user space submission in the same app, based on
performance needs rather than startup flags

- crazy idea: JIT switching between sending jobs one by one to the kernel vs
batching them in user space

- Job submission to hardware stays the same
+ Fence signalling stays in the kernel

- Implementing io_uring at the drm_ level means all upstream drivers gain support
for user space submissions



Quick recap on io_uring

- User space has access to a submission queue

and a completion queue

- Jobs added to the submission queue can be
executed immediately by the kernel or a
kthread can be started after a number of
submissions

- User space reads from the completion queue
to find out the result of the submission

- Kernel thread runs submission jobs in order,
but they can complete in any order

+ Not very different from what AMD has
proposed for their user space submission
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What am | proposing?

» Add support forio_uring in the DRM subsystem

+ Work gets handed over to the kernel drivers via a submission
queue that wraps an actual GPU job submission

+ The submission queue item only contains pointers to buffers
and fences, so it should eliminate kernel copies of the
submission

» Rest of the DRM submission path stays the same as now

+ When job finishes we create a completion item that gets added
to the io_uring's completion queue



io_uring for DRM (cont)

- The io_uring stays at the DRM framework level, so it should be
usable by all GPU kernel drivers

- We might need to understand specific details about each GPU
job to be able to check the submission, or we can call the driver
to do the check (like drm_atomic_check() for display drivers)

- We can filter out requests that don't make sense in the DRM
context



What's the catch?

» jo_uring can potentially allow for some "interesting” features that
are hard to control (pass a framebuffer that is actually a network
socket or a file)

 App needs more permissions/capabilities to be able to use the
lo_uring buffers

+ Feature is completely disabled in ChromeOS and disabled for
apps in Android since 2023

- Not sure about the mapping with drm_scheduler (1:1, 1:N)



Request for feedback

» |sthis a good idea?
- Does anyone want it?

» Should we have only one kthread per FD or one per
drm_scheduler?

- If io_uring is not acceptable, can we have a restricted version of
it? AMD's proposed user mode submission has a pretty similar
structure

- Should we restrict the IOCTLs to just DRM ones, or allow for
‘creative” freedom?

» Rust bindings?



Thanks!



