jo_uring for DRM

Liviu Dudau
Arm Ltd



Who am |

+ Kernel contributor for about 10 years

+ Maintainer for Arm Ltd display drivers for the last 8 years
- Now involved with Panthor kernel driver

+ Maintainer for the Mali CSF firmware in linux-firmware

» Interfacing with community for Arm’' GPU software team
- Attending 2nd XDC in Montreal (wave)



What problem are you trying to solve?

» Modern GPUs want to move job submission outside the kernel

+ Mesa's Gallium strongly assumes that the kernel is in charge of
submitting jobs

+ Vulkan implementations would really like to do the submission
from user space

- Performance can be gained from allowing user space to submit
jobs directly to the HW or firmware

» Synchronization between all three sides is harder than just doing
everything in the kernel



What if we can have the cake and eat it?

 There is a mechanism in the kernel for doing asynchronous
submission of jobs

- Allows for a mixed world where user space is in charge of
creating the jobs

+ Leaves the kernel to do the low level work of talking to the
hardware and fetching the result of the command execution

- Should offer some of the benefits of doing most of the work in
user space and all the drawbacks of accepting unchecked user
commands

» jo_uring to rule them all!



Why io_uring?

- Allows us to decouple the job submission in user space from actual submission to
hardware

- We avoid paying the context switch cost for small submissions where we don't
care that much about the job state

- We can sanity check the job before actual submission (TBD)

- We can mix direct kernel and user space submission in the same app, based on
performance needs rather than startup flags

- crazy idea: JIT switching between sending jobs one by one to the kernel vs
batching them in user space

- Job submission to hardware stays the same
+ Fence signalling stays in the kernel

- Implementing io_uring at the drm_ level means all upstream drivers gain support
for user space submissions



Quick recap on io_uring

- User space has access to a submission queue

and a completion queue

- Jobs added to the submission queue can be
executed immediately by the kernel or a
kthread can be started after a number of
submissions

- User space reads from the completion queue
to find out the result of the submission

- Kernel thread runs submission jobs in order,
but they can complete in any order

+ Not very different from what AMD has
proposed for their user space submission

Application

Application puts new requests at Application consumes responses
the tail of the submission queue from the head of the mpl etio

nses at the tail
head of the submission queue of the completion queue
Kernel

Image by Donald Hunter




What am | proposing?

» Add support forio_uring in the DRM subsystem

+ Work gets handed over to the kernel drivers via a submission
queue that wraps an actual GPU job submission

+ The submission queue item only contains pointers to buffers
and fences, so it should eliminate kernel copies of the
submission

» Rest of the DRM submission path stays the same as now

+ When job finishes we create a completion item that gets added
to the io_uring's completion queue



io_uring for DRM (cont)

- The io_uring stays at the DRM framework level, so it should be
usable by all GPU kernel drivers

- We might need to understand specific details about each GPU
job to be able to check the submission, or we can call the driver
to do the check (like drm_atomic_check() for display drivers)

- We can filter out requests that don't make sense in the DRM
context



What's the catch?

» jo_uring can potentially allow for some "interesting” features that
are hard to control (pass a framebuffer that is actually a network
socket or a file)

 App needs more permissions/capabilities to be able to use the
lo_uring buffers

+ Feature is completely disabled in ChromeOS and disabled for
apps in Android since 2023

- Not sure about the mapping with drm_scheduler (1:1, 1:N)



Request for feedback

» |sthis a good idea?
- Does anyone want it?

» Should we have only one kthread per FD or one per
drm_scheduler?

- If io_uring is not acceptable, can we have a restricted version of
it? AMD's proposed user mode submission has a pretty similar
structure

- Should we restrict the IOCTLs to just DRM ones, or allow for
‘creative” freedom?

» Rust bindings?



Thanks!



