
Ray Tracing for
Adreno GPUs on
Turnip

Connor Abbott

What is Ray Tracing?

What is Ray Tracing?

from https://www.researchgate.net/figure/Illustration-of-basic-ray-tracing_fig1_317224001

Naive Ray Tracing

for each pixel (i, j):
ray = ray_from(camera_origin, camera_dir, camera_up, i, j)
t_min = infinity # distance to the closest intersecting object
closest_object = null
find the closest intersection
for each object: # triangle, sphere, etc.

if object.intersects(ray, &t) and t < t_min:
t_min = t
closest_object = object

calculate the light emitted, casts
secondary rays again loop over all objects!
intersection_point = ray.origin + t_min * ray.dir
image[i,j] = closest_object.color(intersection_point, ray.dir)

Acceleration Structures

● Problem #1: Time complexity

○ O(objects * pixels * bounces) is impractically slow!

● An acceleration structure quickly skips irrelevant parts of the scene

Acceleration Structures

as = build_acceleration_structure(objects)
for each pixel (i, j):

ray = ray_from(camera_origin, camera_dir, camera_up, i, j)
t_min, closest_object = as.intersect(ray)

calculate the light emitted, casts secondary rays
secondary rays also use acceleration structure
intersection_point = ray.origin + t_min * ray.dir
image[i,j] = closest_object.color(as, intersection_point,

ray.dir)

Acceleration Structures

● Most common acceleration structure: BVH (Bounding Volume Hierarchy) Trees

BVH Trees

Acceleration Structures Cont.

● Scenes contain both static + dynamic geometry

● Rebuilding the whole acceleration structure each frame is expensive

● Split into top-level (TLAS) and bottom-level (BLAS) acceleration structures

○ Reuse most BLASs across frames

● TLAS contains instances of objects

○ Each instance has a BLAS pointer + transformation matrix

● BLAS contains primitives (triangles, or programmable objects defined by

shader code with a given bounding box)

● Each ray intersection walks the TLAS and then BLAS

Invocation Repacking

● Problem #2: Ray coherence
● "Coherent" rays bounce in different directions and become non-coherent

● Worse for complex scenes with many bounces

Invocation Repacking

● Separate shader for each material being hit

● Batch up and reorder execution of these shaders

● Shaders must be split into main shader and continuation shaders

Subgroup 1

Subgroup 2

Repacked Subgroup 3

Invocation Repacking

color1 = trace_ray(...)
color2 = trace_ray(...)
return (color1 + color2) / 2

main:
trace_ray(..., continuation1)

continuation1:
color1 = trace_ray_result
save(color1) # write to stack
trace_ray(..., continuation2)

continuation2:
color1 = restore() # read stack
color2 = trace_ray_result
return (color1 + color2) / 2

nir_lower_shader_calls in Mesa

Ray tracing in Vulkan

● VK_KHR_ray_query
○ Intersect a ray with an acceleration structure in any shader

○ Can be used with compute shaders or as part of the classic pipeline for

secondary rays (better shadows, reflections etc.)

● VK_KHR_ray_tracing_pipeline
○ Separate per-material shaders (instead of giant compute ubershader)

○ Allows implementations to do invocation repacking

● VK_KHR_acceleration_structure
○ Build an opaque acceleration structure on the CPU or GPU

○ Used by both extensions

Ray Tracing in Adreno

Ray tracing in Adreno

● a740+, x1e laptops: Ray Tracing Unit (RTU)

○ One shader instruction: ray_intersection
○ Intersects with one BVH node at a time

○ Shader keeps track of stack of nodes

○ Meant for VK_KHR_ray_query
● a750+: Application QRisc Engine (AQE)

○ Coprocessor for dynamic work generation

○ Implements RT pipelines and invocation repacking

○ Experimental, not exposed by default with the blob driver

○ Not implemented yet in turnip

Adreno BVH Node Format

● Each node in the tree is 64 bytes

● Two main types of nodes:

○ Internal node: Compressed axis-aligned bounding box (AABB) for up to 8

children

○ Leaf nodes

Internal Nodes

● Grid scale (aka "shared exponent") for x, y, z axes

● Origin point for the grid

● 8-bit grid offset (aka "mantissa") for 6 AABB bounds for each child

Internal Nodes

grid origin: (..., ..., ...)
grid scale (..., ..., ...)
4 children:
- For each child: (x

min
, y

min
, z

min
),

(x
max

, y
max

, z
max

)
Children base offset

...
child 0

child 1

child 2

child 3

...

Internal Nodes

● Single base offset for children: children must be contiguous!

● ray_intersection returns a bitmask of hit children, sorted by distance

○ 3 bits per child times 8 children, plus count of hit children

○ Plus the base children offset

Leaf nodes

● Simple uncompressed encoding

○ Triangle nodes: list of 32-bit floating point vertices

○ AABB nodes: bounding box min and max coordinates

○ Instance nodes: same as AABB but with extra instance culling

information

● Very complex compressed encoding for triangle & AABB nodes

○ Reverse engineered but not implemented yet in turnip!

○ Even on the blob, only implemented when building on CPU

○ Can store up to 4 triangles in a single 64-byte descriptor

Ray Tracing in Turnip

Prior Art in Mesa

● anv was the first driver to gain RT support

● BVH traversal is handled entirely in hardware

● BVH building is very Intel-specific, complicated, designed to be shared with

Windows driver

○ Not a great base for other drivers

● radv was the second driver

○ BVH building uses a generic "IR" to support different construction

methods

○ Mostly driver-independent!

○ BVH traversal is implemented in the driver, like Qualcomm

Turnip BVH Building

Generic BVH Building

● Can it be done? 🤔 Yes!

○ Fork radv, remove encoding part

○ s/radv_ir/vk_ir/
○ Add support for different subgroup sizes

○ Use generic Vulkan meta framework for compiling kernels

■ Not done yet for radix sort

○ Add driver callbacks:

■ Get the maximum size of a final encoded AS

■ Encode an AS

■ Update an AS (optional, not used by turnip yet)

Generic BVH Building

● Building is split into multiple passes
○ Each pass is run in parallel for all BVH trees being built

○ Improves parallelism and reduces pipeline bubbles when building

multiple BVHs at once

○ However this complicates the encoding callback

● Driver may choose different encoding tradeoffs (size, build speed, traversal

speed) based on user flags

○ This is exposed through different encoding keys chosen by the driver

○ BVHs are sorted based on encoding key by the runtime

○ The driver may bind different pipelines based on the key

Generic BVH Building

● The IR resides in user-allocated scratch space

● Consists of:

○ The header (vk_ir_header)

○ An array of leaf nodes

○ An array of internal nodes (directly after the leaf nodes)

● Each leaf node has data taken directly from the user primitive

● Internal nodes (vk_ir_box_node) have an array of two children

○ The encoder collapses internal nodes for BVH formats with more

children

Generic BVH Building

● Requires a few "generic" callbacks for functionality not in Vulkan for

convenience:

○ vkCmdFillBuffer with device address

○ Write immediate data

■ Used to fill vk_ir_header
■ Expected to only be used with a small amount of data

■ CP_MEM_WRITE on AMD/Qualcomm

○ "non-aligned" dispatches similar to OpenCL

● All of these could/should be Vulkan extensions

Generic BVH Building

● Various algorithms require forward progress guarantees because workgroups

wait on results of earlier workgroups

○ Could be weakened if necessary by e.g. assigning workgroups by

incrementing an atomic

● This is something else that could/should be a Vulkan extension

● In practice, just Assume It Works (tm)

BVH Encoding in Turnip

BVH Building in Turnip

● Again, heavily based on radv

● s/radv_/tu_/
● Top-down algorithm for folding children into internal nodes

○ Each node allocates space for its children and encodes any leaf children

○ Modified in turnip to always allocate children contiguously

● Added support for compressing internal nodes

Ray Traversal in Turnip

Ray Traversal in Turnip

● Again adapted from radv

● Terrifying pile of nir_builder to implement the traversal loop

○ Future project: compile from CLC instead

● Lower opaque rayQueryEXT struct to concrete Turnip-specific struct

● Keep track of a limited number of ancestors

○ When pushing a node onto the stack, overwrite the oldest ancestor

○ When we run out of space, re-intersect it

○ This hopefully happens rarely

● Different stack layout due to different format of HW instruction output

Future Work

● Getting it merged

● More performance tuning?

● Support for accelerated updating of BVH trees

● Support compressed triangle/AABB nodes

● AQE and VK_KHR_ray_tracing_pipeline

Where is the Code?

● Generic BVH building:

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28446

● Turnip VK_KHR_ray_query:

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28447

● RTU documentation:

https://gitlab.freedesktop.org/freedreno/freedreno/-/wikis/a7xx-ray-tracing

● AQE documentation:

https://gitlab.freedesktop.org/freedreno/freedreno/-/wikis/AQE#ray-tracing

● radv: Can someone else please port it over to common BVH building 🙏

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28446
https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28447
https://gitlab.freedesktop.org/freedreno/freedreno/-/wikis/a7xx-ray-tracing
https://gitlab.freedesktop.org/freedreno/freedreno/-/wikis/AQE#ray-tracing

