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A few months ago on a desktop far,
far away. . . .

(It’s my desktop. It’s in my house, 1000s of miles from Montreal.)
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Yes, that’s RADV running on Windows 11
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Let’s talk about this...

● How did I do it?

● Why did I do it?

● What does this mean for the future of Mesa?
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About me
● Faith Ekstrand

– @gfxstrand@mastodon.gamedev.place

● Been around freedesktop.org since 2013
– First commit: wayland/31511d0e, Jan 11, 2013

● At Intel from June 2014 to December 2022
– NIR, Intel (ANV) Vulkan driver, SPIR-V  NIR, ISL, other Intel bits→

● At Collabora since January 2022
– Work across the upstream Linux graphics stack, wherever needed

– Currently the lead developer / maintainer of NVK
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First, let’s talk about WDDM2
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What is WDDM2?
● Windows Driver Display Model, version 2
● WDDM 1 was introduced in Windows Vista

– Better separation between userspace and kernel driver
– Composited desktop
– GPU Virtual memory support for process separation
– GPU work scheduling
– GPU reset handling

● WDDM 2 was introduced in Windows 10
– Explicit virtual memory management (sparse memory)
– Improved synchronization model (timeline semaphores)



9

What is WDDM2?
● WDDM is an interface provided by Microsoft
● Provides entrypoints (think ioctls) for 

operations:
– Enumeration of adapters (think VkPhysicalDevice)
– Creation of devices and queues
– Memory allocation and mapping
– Virtual address assignment (vkQueueBindSparse)
– Work submission (vkQueueSubmit)
– Synchronization
– Presentation (vkQueuePresent)

● All of this is standardized! (Well, sort of...)



10

So it’s standardized?
● Well, sort-of...
● Many entrypoints have a pPrivateData

– Represented as a void pointer and size

● Passed verbatim between UMD and KMD
– May contain whatever, Windows doesn’t care

● Sometimes pPrivateData contains vital details
– Sizes and types of memory allocations

– Type of queue (graphics, compute, etc.)

– Everything about command submission
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Is the WDDM2 API stable?
● Yes, sort-of…
● The WDDM 2 API is stable

– There was a break between WDDM 1 and 2
– Otherwise, the API only moves forwards

● The pPrivateData fields are not stable
– The IHV is free to change their layout/meaning at will

● IHVs ship userspace and kernel together
– They are always updated together
– The only requirement is that the shipped KMD/UMD pair can talk to 

each other.
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Is the WDDM2 API documented?

● Technically, yes

– https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/d
3dkmthk/

● The docs aren’t great and there are no examples

– Well, okay, there are now that my RADV branch exists 😅

● Nothing in pPrivateData is documented

– And good luck getting the IHV to let you look at their Perforce repo!

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/d3dkmthk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/d3dkmthk/
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Reverse-engineering AMD’s 

pPrivateData
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Reverse-engineering pPrivateData
● First, you’ll need a D3D12 driver…

– I used D3D12 because WDDM is designed for D3D

– Available inside the WSL2 container since 2020

– WSL2 makes everything easier 😉

● And some carefully targeted tests
– https://gitlab.freedesktop.org/gfxstrand/wddm2-pdd-re

● And a way to scrape pPrivateData from the driver
– https://github.com/gfxstrand/libdxg/tree/pdd-re

● Then you poke at D3D12 and see what comes out!

https://gitlab.freedesktop.org/gfxstrand/wddm2-pdd-re
https://github.com/gfxstrand/libdxg/tree/pdd-re
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Reverse-engineering pPrivateData



16

What I know about AMD’s PPDs
● Adapter info: maybe 2%

– I know where they put the PCI ID

– I know very little else

– I can’t change the adapater info so it’s hard to R/E
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What I know about AMD’s PPDs
● Adapter info: maybe 2%

● Memory allocation: 20%, enough for now
– Client requested size

– Aligned size

– A few bits that control placement, mapping, etc.

– Size is duplicated ~10x and I don’t know why

– Nothing about shared images (It’s probably AddrLib? )🤷🏻‍♀️
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What I know about AMD’s PPDs
● Adapter info: maybe 2%

● Memory allocation: 20%, enough for now

● Queue creation: 20%, enough to create a queue
– There is a pPrivateData but nothing goes in it

– There are NodeOrdinal and EngineAffinity fields in the WDDM2 API

– I don’t really know what either of them mean

– I know (0, 1) gives me graphics and (2, 1) gives me compute

– I don’t know how any of it actually maps to hardware
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What I know about AMD’s PPDs
● Adapter info: maybe 2%

● Memory allocation: 20%, enough for now

● Queue creation: 20%, enough to create a queue

● Queue submit: 80%

– I pretty much know how queue submission works

– Including prelude and postlude command buffers

– I don’t know how HW contexts work
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What I know about AMD’s PPDs
● Adapter info: maybe 2%

● Memory allocation: 20%, enough for now

● Queue creation: 20%, enough to create a queue

● Queue submit: 80%

Overall, it’s working but lots of stuff doesn’t work yet

A full CTS run has enough bugs to take down Windows 
in 5 minutes
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Why use WSL?
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Graphics drivers in WSL
● Microsoft added graphics to WSL in 2020

● Paravirtualized WDDM2 is exposed to Linux
– dxgkrnl kernel driver maps WDDM2 in the host to ioctls in the guest

– libdxg.so maps those ioctls back to the WDDM2 interface

– The only real difference is WCHAR on Linux vs. Windows

● IHVs provide a Linux build of their D3D12 driver

● Other APIs like OpenGL are layered on top of D3D12
– They’re just Mesa drivers that run on D3D12

– There are a couple exceptions for things like CUDA
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Why use WSL?
● libdxg.so provides the same interface as Gdi32.dll

● It lets me use a Linux build of Mesa
– No need to sort out all the Windows build issues

– I can rsync builds between my laptop and my Windows box

● I can just use LD_PRELOAD to replace libdxg.so
– I don’t know how to hook a DLL but I do know how to use LD_PRELOAD

● WSL exposes a Wayland compositor with wl_shm
– I didn’t have rewrite the Vulkan WSI before I can see something
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But why?!?
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Why not? 🤷🏻‍♀️
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Why?
● I’ve talked about Mesa on Windows for years

– Why not? Why should Windows drivers be closed?

● IHV Windows people like to say it won’t work
– “But there’s all this IP involved in Windows drivers!”
– It’s all nonsense…
– I want to prove them wrong

● RADV is better than AMD’s Vulkan driver
– Faster, more features, better development model…

● Game developers are tired of closed-source 
drivers
– They’re undebuggable without IHV help
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Mesa: The GCC of graphics?
● Once upon a time, everyone wrote C compilers

– MSVC on Windows

– Sun, HP, SGI all had their own C compilers

– Intel had ICC

– C was the standard
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Mesa: The GCC of graphics?
● Once upon a time, everyone wrote C compilers

● There were oddly specific compilers
– Want a C compiler that targets 2nd gen AMD Opteron?

– Auto-vectorizing FORTRAN compiler? There’s a VC startup for that
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Mesa: The GCC of graphics?
● Once upon a time, everyone wrote C compilers

● There were oddly specific compilers

● Now there are 3: GCC, LLVM/clang, and MSVC
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Mesa: The GCC of graphics?
● Once upon a time, everyone wrote C compilers

● There were oddly specific compilers

● Now there are 3: GCC, LLVM/clang, and MSVC

● Why shouldn’t Mesa be the GCC of graphics?
– NVIDIA will always write their own

– But what about everyone else?
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Mesa: The GCC of graphics?
● Once upon a time, everyone wrote C compilers

● There were oddly specific compilers

● Now there are 3: GCC, LLVM/clang, and MSVC

● Why shouldn’t Mesa be the GCC of graphics?

● If Mesa is going to be the de-facto Vulkan 
implementation, we need to support Windows



33



34

But can we actually ship it?
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But can we actually ship it?
● Not if AMD interferes

– Ideally, we would even get their help

● The pPrivateData structs aren’t stable
– AMD can re-arrange them at will and break Mesa

● The pPrivateData structs aren’t not stable
– IHVs don’t change those structs on a whim

– Even for internal development, updating your KMD is a pain

– UMDs working on a 6 month old KMD is pretty common

– I was able to run a 2 year old Mesa branch on a new AMD driver
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But can we actually ship it?
● Ideally, the IHV would provide a LibAMDPPD.dll

– Updated along with the KMD and D3D12
– Would have a stable getter/setter API

● Or, the IHV can just ship Mesa
– Upstream Mesa would always track the latest KMD release
– We hope there’s not too much churn
– The IHV ships a Mesa alongside D3D12 and the KMD and verifies 

the combination as part of their release process
– This option isn’t great because you can’t bisect old bugs

● There’s work to do here but it should be possible
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What is the impact on Mesa?
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What is the impact on Mesa?
● Vulkan runtime support for WDDM2

– https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/29945

● Mesa will need to build on Windows
– We already do for Dozen, GLOn12, and lavapipe

● We need to improve the Win32 WSI code
– Like rest of WSI, most developers won’t have to care

● We have to sometimes debug on Windows
– Linux with DXVK/VKD3D have way more titles than native Vulkan

● We might get some new developers!

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/29945
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Is this actually a good idea?
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🤔
I’ll let you think about that
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Thank you!
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