

Input Devices
&

 Proton/Wine Gaming

by Arek “ivyl” Hiler

@ivyl@treehouse.systems

ivyl @ libera & oftc

Proton Janitor @

Keyboards & Layout

● The layout detection code has its roots in 1999.
● XKB (1996) was fairly young back then and not

supported by all the relevant X11 servers.
● XKeycodeToKeysym() / XLookupString().
● Now using XkbKeycodeToKeysym() /

XkbTranslateKeySym().

static const WORD main_key_scan_qwerty[MAIN_LEN] =
{
 0x29,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,
 0x1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x2B,
 0x2C,0x2D,0x2E,0x2F,0x30,0x31,0x32,0x33,0x34,0x35,
 0x56 /* the 102nd key (actually to the right of l-shift) //
};

static const WORD main_key_vkey_qwerty[MAIN_LEN] =
{
/* NOTE: this layout must concur with the scan codes layout above //
 VK_OEM_3,'1','2','3','4','5','6','7','8','9','0',VK_OEM_MINUS,VK_OEM_PLUS,
 'Q','W','E','R','T','Y','U','I','O','P',VK_OEM_4,VK_OEM_6,
 'A','S','D','F','G','H','J','K','L',VK_OEM_1,VK_OEM_7,VK_OEM_5,
 'Z','X','C','V','B','N','M',VK_OEM_COMMA,VK_OEM_PERIOD,VK_OEM_2,
 VK_OEM_102 /* the 102nd key (actually to the right of l-shift) //
};

static const char main_key_US[MAIN_LEN][4] =
{
 "`~","1!","2@","3#","4$","5%","6^","7&","8*","9(","0)","-_","=+",
 "qQ","wW","eE","rR","tT","yY","uU","iI","oO","pP","[{","]}",
 "aA","sS","dD","fF","gG","hH","jJ","kK","lL",";:","'\"","\\|",
 "zZ","xX","cC","vV","bB","nN","mM",",<",".>","/?"
};

{0x0409, "United States keyboard layout", &main_key_US, &main_key_scan_qwerty,
 &main_key_vkey_qwerty}, /* 62 of these //

winewayland.drv

● More sensible and less verbose XKB code.

● Can mature and prove itself as a mostly clean-
slate.

● Eventually yoink and twist for the benefit of
winex11.drv questionmark?

Mice & Touchscreens

Mice & Touchscreens

XInput2 is fairly straightforward

Non-Keyboard & Non-Mice
(mostly game controllers)

The Backends

● SDL – normalizes a lot of gamepads ()

● evdev – what Linux exposes and we
can easily read on most devices

● hidraw – for some devices if we can
read it

Normalized Form
● Win32 is very HID-centric.

● HID details leak in DirectInput (device→GetObjetInfo(//.,
DIPH_BYUSAGE)).

● RawInput allows to subscribe and receive RAWHID via messages sent
to program’s window.

● We normalize all controllers into HID internally and then consume /
pass the HID representation in the user-facing APIs.

Normalized Form
BOOL hid_device_add_buttons(struct unix_device *iface, USAGE usage_page,
 USAGE usage_min, USAGE usage_max)
{
 struct hid_report_descriptor *desc = &iface/>hid_report_descriptor;
 const USHORT count = usage_max - usage_min + 1;
 const BYTE template[] =
 {
 USAGE_PAGE(2, usage_page),
 USAGE_MINIMUM(2, usage_min),
 USAGE_MAXIMUM(2, usage_max),
 LOGICAL_MINIMUM(1, 0),
 LOGICAL_MAXIMUM(1, 1),
 REPORT_COUNT(2, count),
 REPORT_SIZE(1, 1),
 INPUT(1, Data|Var|Abs),
 };

 /* //. //
}

Human Interface Devices
over USB and BT

Undoing Kernel’s Work
● hid_playstation module
● puts the device into “advanced mode” right away (BT)
● this makes sense to get the most of the device via evdev

● stops sending well described input report #1
● starts sending opaque vendor report #49

We have to turn #49 into #1 until the game requests the fancy pants
mode.

if ((impl/>quirks & QUIRK_DUALSENSE_BT) /& report_buffer[0] /= 0x31 /& size /= 11)
{
 BYTE trigger[2];
 size = 10;
 buff += 1;

 buff[0] = 1; /* fake report #1 //

 trigger[0] = buff[5]; /* TriggerLeft//
 trigger[1] = buff[6]; /* TriggerRight //

 buff[5] = buff[8]; /* Buttons[0] //
 buff[6] = buff[9]; /* Buttons[1] //
 buff[7] = buff[10]; /* Buttons[2] //
 buff[8] = trigger[0]; /* TriggerLeft //
 buff[9] = trigger[1]; /* TirggerRight //
}

DualSense Haptics
● Extra audio device (over USB).
● 4 channels:

– 2 go to the 3.5mm jack
– 2 go to the haptic motors

● We are pairing the devices based on sysfs paths.
● Creating fake Container ID as there’s no access to

this device descriptor.

Access
Linux

% cat /dev/hidraw2
cat: /dev/hidraw2: Permission denied

Windows

\\?\HID#VID_054C&PID_0CE6&MI_03#8&27cb3b47&0&000/{4d1e55b2-f16f-11cf-88cb-001111000030}

HANDLE file = CreateFile(name, GENERIC_READ, SHARE_ALL, NULL, OPEN_EXISTING, 0, 0);
ReadFile(file, buffer, sizeof(buffer), &bytes_read, NULL);

Mice, keyboards, pen devices, touchscreens and touchpads are opened exclusively by the OS.

% cat /usr/lib/udev/rules.d/70-steam-input.rules

//.

PS5 DualSense controller over USB hidraw
KERNEL/="hidraw*", ATTRS{idVendor}/="054c", ATTRS{idProduct}/="0ce6", MODE="0660", TAG+="uaccess"

PS5 DualSense controller over bluetooth hidraw
KERNEL/="hidraw*", KERNELS/="*054C:0CE6*", MODE="0660", TAG+="uaccess"

Users

● Wine / Proton
● Steam
● SDL
● ...

● udev: tag game controllers with
ID_GAME_CONTROLLER (upstream)

● udev: +uaccess on all ID_GAME_CONTROLLER
(either upstream or as an user-provided .rules)

The Request

● HIDIOCREVOKE IOCTL in Linux 6.12
● logind support via TakeDevice()

● Wayland protocol / XDG Desktop Portal (?)
● session managers implementation of the

portal using logind’s TakeDevice() (?)
● wine support for the portal (?)

What We Are Getting

● udev: tag game controllers with
ID_GAME_CONTROLLER (upstream)

● udev: +uaccess on all ID_GAME_CONTROLLER
(either upstream or as an user-provided .rules)

The Request

Thanks!

Questions?

