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Motivation
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Motivation
• Become a grownup compiler.

• Make it easier to enable new compiler based features.

• Wider use of Rust in Mesa.
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Status Quo
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Status Quo
• There are many good resourced on mesa compilers.

• PoC backend compiler based on agx.

• etnaviv gained a Rust based assembler (lib).

• NAK has done all the hard work.

• Shared Rust code for compilers.
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Target ISA
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Target ISA
• 128 bit fixed size ISA.

• up to 3 srcs.

• vec4.

• 2 types of registers (temps, uniforms).

• has isaspec support (etnaviv.xml).
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Target ISA

imadlo0.u32       t0.x___, t0.xxxx, 32, u0.zzzz

9



Road to Success
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Road to Success
• Do as much lowering in NIR as practical.

• Have a basic set of backend optimizers.

• Support control flow from day 0.

• Support all HW bit sizes (8/16/32) from day 0.
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Road to Success
• Started about 3-4 months ago.

• Trying to build it right this time.

• Thinking long-term and focused on getting the architecture

right.

12



Road to Success
A brief overview of the past few weeks (1):

• Keep it a secret as long as you can.

• Hack on a Copy & Paste thing for some weeks.

• Refactor everything many many times.

• The first OpenCL shaders are working.

• Start to work through piglit tests.

• Comparing EBC shaders with blob ones.
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Road to Success
A brief overview of the past few weeks (2):

• Still refactorings and bug fixes.

• Passing 200-300 piglit tests.

• Started talking about my PoC with Faith.

• src/compiler/rust is born.

• Started talking about OpenCL topics with Karol.

• Still unsure about the PoC.
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Road to Success
A brief overview of the past few weeks (3):

• Slowly passing around 1000 piglits.

• Frustration and lot of shader debugging.

• More bug fixes and unit tests.

• 2500 passing piglits.

• Liveness and RA added.

• 3000 passing piglits.
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Road to Success
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Shader Debugging Techniques
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Shader Debugging Techniques
The more tests where passing the bigger and complexer

shaders got.
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Shader Debugging Techniques
"See" the flow of data in the shader.
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Shader Debugging Techniques

/*!

[test]

name: sqrt float1

kernel_name: sqrt

global_size: 1 0 0

arg_out: 0 buffer float[1] 2.0 tolerance 3 ulp

arg_in: 1 buffer float[1] 4.0

!*/

kernel void sqrt(global float* out, global float* in0)

{

  out[get_global_id(0)] = native_sqrt(in0[get_global_id(0)]);

}
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Shader Debugging Techniques

000 load.denorm.u32.ls2  t2.x___, u0.yxxx, t0.xxxx, void

001 sqrt                 t3.x___, void, void, t2.xxxx

002 store.denorm.u32.ls2 mem.x___, u0.xxxx, t0.xxxx, t3.xxxx

003 store.denorm.u32     mem.x___, u0.zxxx, 0, t0.xxxx

004 store.denorm.u32     mem.x___, u0.zxxx, 4, t0.yxxx

005 store.denorm.u32     mem.x___, u0.zxxx, 8, t0.zxxx

006 store.denorm.u32     mem.x___, u0.zxxx, 12, t0.wxxx

...

018 store.denorm.u32     mem.x___, u0.zxxx, 60, t3.wxxx
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Shader Debugging Techniques

arg_out: 0 buffer float[1] 2.0 tolerance 3 ulp

arg_in: 1 buffer float[1] 4.0

000 load.denorm.u32.ls2  t2.x___, u0.yxxx, t0.xxxx, void

001 sqrt                 t3.x___, void, void, t2.xxxx

t2.x: 40800000 - 1082130432 - 4.000000

t2.y: 00000000 - 0 - 0.000000

t2.z: 00000000 - 0 - 0.000000

t2.w: 00000000 - 0 - 0.000000

t3.x: 40000000 - 1073741824 - 2.000000

t3.y: 00000000 - 0 - 0.000000

t3.z: 00000000 - 0 - 0.000000

t3.w: 00000000 - 0 - 0.000000
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Challenges
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Challenges
• Having two compilers for one driver

• Untyped NIR

• Still lot of RE needed
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Further Work

25



Further Work
Integer Promotions
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Further Work

kernel void add(global char* out, char a, char b)

{

        out[0] = a + b;

}

8 %3 = @load_kernel_input (..)

8 %5 = @load_kernel_input (..)

32 %7 = i2i32 %5

32 %6 = i2i32 %3

32 %8 = iadd.nsw %6, %7

8 %9 = u2u8 %8
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Further Work
• Expand the usage of the compiler to more shader stages.

• Expand the compiler to support more GPU generations.

• Fully replace the old compiler.

• Instruction stress tester.
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Discussion
Join us!

https://www.igalia.com/jobs
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https://www.igalia.com/jobs
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