
EBC - A new backend
compiler for etnaviv

Christian Gmeiner

2024-10-09

1

Agenda

1. Motivation

2. Status Quo

3. Target ISA

4. Road to Success

5. Shader Debugging Techniques

6. Challenges

7. Further Work

2

Motivation

3

Motivation
• Become a grownup compiler.

• Make it easier to enable new compiler based features.

• Wider use of Rust in Mesa.

4

Status Quo

5

Status Quo
• There are many good resourced on mesa compilers.

• PoC backend compiler based on agx.

• etnaviv gained a Rust based assembler (lib).

• NAK has done all the hard work.

• Shared Rust code for compilers.

6

Target ISA

7

Target ISA
• 128 bit fixed size ISA.

• up to 3 srcs.

• vec4.

• 2 types of registers (temps, uniforms).

• has isaspec support (etnaviv.xml).

8

Target ISA

imadlo0.u32 t0.x___, t0.xxxx, 32, u0.zzzz

9

Road to Success

10

Road to Success
• Do as much lowering in NIR as practical.

• Have a basic set of backend optimizers.

• Support control flow from day 0.

• Support all HW bit sizes (8/16/32) from day 0.

11

Road to Success
• Started about 3-4 months ago.

• Trying to build it right this time.

• Thinking long-term and focused on getting the architecture

right.

12

Road to Success
A brief overview of the past few weeks (1):

• Keep it a secret as long as you can.

• Hack on a Copy & Paste thing for some weeks.

• Refactor everything many many times.

• The first OpenCL shaders are working.

• Start to work through piglit tests.

• Comparing EBC shaders with blob ones.

13

Road to Success
A brief overview of the past few weeks (2):

• Still refactorings and bug fixes.

• Passing 200-300 piglit tests.

• Started talking about my PoC with Faith.

• src/compiler/rust is born.

• Started talking about OpenCL topics with Karol.

• Still unsure about the PoC.

14

Road to Success
A brief overview of the past few weeks (3):

• Slowly passing around 1000 piglits.

• Frustration and lot of shader debugging.

• More bug fixes and unit tests.

• 2500 passing piglits.

• Liveness and RA added.

• 3000 passing piglits.

15

Road to Success

16

Shader Debugging Techniques

17

Shader Debugging Techniques
The more tests where passing the bigger and complexer

shaders got.

18

Shader Debugging Techniques
"See" the flow of data in the shader.

19

Shader Debugging Techniques

/*!

[test]

name: sqrt float1

kernel_name: sqrt

global_size: 1 0 0

arg_out: 0 buffer float[1] 2.0 tolerance 3 ulp

arg_in: 1 buffer float[1] 4.0

!*/

kernel void sqrt(global float* out, global float* in0)

{

 out[get_global_id(0)] = native_sqrt(in0[get_global_id(0)]);

}

20

Shader Debugging Techniques

000 load.denorm.u32.ls2 t2.x___, u0.yxxx, t0.xxxx, void

001 sqrt t3.x___, void, void, t2.xxxx

002 store.denorm.u32.ls2 mem.x___, u0.xxxx, t0.xxxx, t3.xxxx

003 store.denorm.u32 mem.x___, u0.zxxx, 0, t0.xxxx

004 store.denorm.u32 mem.x___, u0.zxxx, 4, t0.yxxx

005 store.denorm.u32 mem.x___, u0.zxxx, 8, t0.zxxx

006 store.denorm.u32 mem.x___, u0.zxxx, 12, t0.wxxx

...

018 store.denorm.u32 mem.x___, u0.zxxx, 60, t3.wxxx

21

Shader Debugging Techniques

arg_out: 0 buffer float[1] 2.0 tolerance 3 ulp

arg_in: 1 buffer float[1] 4.0

000 load.denorm.u32.ls2 t2.x___, u0.yxxx, t0.xxxx, void

001 sqrt t3.x___, void, void, t2.xxxx

t2.x: 40800000 - 1082130432 - 4.000000

t2.y: 00000000 - 0 - 0.000000

t2.z: 00000000 - 0 - 0.000000

t2.w: 00000000 - 0 - 0.000000

t3.x: 40000000 - 1073741824 - 2.000000

t3.y: 00000000 - 0 - 0.000000

t3.z: 00000000 - 0 - 0.000000

t3.w: 00000000 - 0 - 0.000000

22

Challenges

23

Challenges
• Having two compilers for one driver

• Untyped NIR

• Still lot of RE needed

24

Further Work

25

Further Work
Integer Promotions

26

Further Work

kernel void add(global char* out, char a, char b)

{

 out[0] = a + b;

}

8 %3 = @load_kernel_input (..)

8 %5 = @load_kernel_input (..)

32 %7 = i2i32 %5

32 %6 = i2i32 %3

32 %8 = iadd.nsw %6, %7

8 %9 = u2u8 %8

27

Further Work
• Expand the usage of the compiler to more shader stages.

• Expand the compiler to support more GPU generations.

• Fully replace the old compiler.

• Instruction stress tester.

28

Discussion
Join us!

https://www.igalia.com/jobs

29

https://www.igalia.com/jobs
https://www.igalia.com/jobs

30

