
Splitting GStreamer Pipelines

Jan Schmidt jan@centricular.com
A Coruña, 26th September 2023

mailto:jan@centricular.com

Monolithic Pipelines
The original way
Good for many scenarios
Perfectly capable of dynamism - but the code is harder

Divide and conquer

Split pipelines into several smaller ones

Compartmentalize Code
Modularity: easier to understand and maintain
Different teams or people can work on (somewhat) self-contained pipelines
Very dynamic pipelines can benefit from compartmentalization, f.ex., several
hundred network clients coming and going every hour

Error Resilience
Incoming video from camera

What if camera gets disconnected?
Encode and write video to file

What if disk fails?
Apply transforms, encode, write to network

What if the network goes down?
None of these should bring down everything

Process Isolation
Parsing of untrusted data

Demuxing/decoding of untrusted media
Internet-facing interfaces

RTSP server, HTTP server, incoming RTP, etc.
Actions that require elevated privileges
DRM black-box

Easier Dynamism
1-to-N, one source to multiple sinks
N-to-M, multiple sources to multiple sinks

GStreamer's Decoupling Mechanisms

So many approaches over the years

Hard to even summarise in 40 minutes
but one thing in common:

What needs communicating?
Exactly what depends on the problem

but also, Bufferpools, Pipeline State, Clocks, GstContexts
Different decoupling elements target different use cases

Decoupling Elements - Intra-process
appsink , appsrc

proxysink , proxysrc

Original inter* elements (video, audio, subtitles)

gst-interpipes

New inter plugin

Decoupling Elements - Inter-process
shmsink , shmsrc

ipcpipelinesink , ipcpipelinesrc

cudaipcsink , cudaipcsrc

unixfdsink , unixfdsrc (in MR)

Various network elements

Varied by linking method
by code: appsink / appsrc

by pointer: proxysink / proxysrc

by channel string: classic inter* , interpipes , new inter

by named pipe/unix domain socket: all the IPC elements

Format negotation
Producer decides format: appsink / appsrc , classic inter* , new inter

Upstream negotation: proxysink / proxysrc , interipes , ipcpipeline

Other query passing
Queries are needed for bufferpool sharing or GstContext passing (intra-
process)
proxysink / proxysrc , interpipes , new inter

appsink / appsrc can do allocation query in 1.24

1:1 vs 1:N data passing
proxysink / proxysrc and ipcpipeline are 1:1

Others all support 1:N

Zero copy
Intra-process options are zero-copy - just passing buffers
Inter-process: shmsink / shmsrc , unixfd elements can be

Queues / decoupling of receivers
Internal queues (controllable size):

appsink / appsrc , interpipes , new inter , cudaipc (*)

Internal queue (fixed size):
proxysink / proxysrc

Direct connection (non-blocking):
classic inter* elements

Direct connection (blocking):
shmsink / shmsrc (*)

Other notable features / differences
ipcpipeline changes receiver pipeline state to follow the producer state

interpipe elements adjust buffer timestamps for base time differences

inter elements do latency queries properly for live pipelines

No elements compensate for pipeline clock differences

PSA
Watch out for processing-deadline !

Summary
Link nego queries 1:N Zero Copy Buffering IPC

appsrc / appsink Code * X X X

proxysink , proxysrc Ptr X X X X

original inter* Name X X

gst-interpipes Name X X X X

New inter Name X X X

shmsink , shmsrc Path X * * X

ipcpipeline Path X X X

cudaipcsink / cudaipcsrc Path X X X X

unixfdsink / unixfdsrc Path X * ? X

