
1

Adding W3C Media Source Extensions 
and Encrypted Media Extensions to 
GStreamer

Jordan Yelloz
Senior Software Engineer



2

About Me
● Working on GStreamer projects at Collabora since 2022

● Previously worked at Amazon Video and a few much smaller 

companies
– Projects ranging from digital print automation, GStreamer, Linux audio drivers, web 

services

● Based in Fort Collins, Colorado, USA



3

Agenda

● Media Source Extensions (MSE) Introduction

● Encrypted Media Extensions (EME) 

Introduction

● GStreamer MSE Library

● GStreamer EME Interfaces

● GStreamer EME Implementations

● Development Challenges



4

Media Source Extensions
Introduction



5

Media Source Extensions - Intro
● Web technology allowing programmatic input to 
<audio>/<video> elements

● Demuxes and parses raw data into timecoded samples
● Stores samples in time-addressable data structures
● Supported formats:

– Fragmented MP4

– WebM

– MPEG-TS

– MP3/M4A audio



6

● HTML Media Element
– Playback component

● Media Source
– Entry point to MSE API, group of Source Buffers, attached to Media Element

● Source Buffer
– Single byte stream of content

– Bytes are parsed and organized into Track Buffers
● Track Buffer

– Parsed timeline of encoded samples for a single track, may have gaps

– Feeds media into playback component

Media Source Extensions - Intro



7

MSE - Structural
Relationships

Application

MediaSource

SourceBuffer

TrackBuffer

Media Player



8

MSE – Data Flow

Raw Data
Application

Parsed Samples

SourceBuffer

Parsed Samples
TrackBufferMedia Player



9

Encrypted Media Extensions
Introduction



10

Encrypted Media Extensions - Intro
● Web technology for decryption of encrypted media
● Primarily defines communications pattern between Application, License 

Authority, and Content Decryption Module (CDM)
● Supported container formats:

– MP4, WebM
● Relies on Common Encryption (CENC) scheme for each supported container

– Allows the same encrypted media to be processed by multiple CDMs

– Initialization Data within container informs system which keys are needed to decrypt a span of 

media
● Specifies "Clear Key" decryption system for evaluation purposes
● Web browsers integrate commercial CDMs



11

Encrypted Media Extensions - Intro
● MediaKeySystemAccess

– Builds Media Keys instance when possible

● MediaKeys

– Wrapper for underlying CDM instance, maintains Sessions

● MediaKeySession

– Represents the keys referenced in a single unit of Initialization Data



12

EME - Structural
Relationships

Application

MediaKeys

MediaKeySession

Key

Media Player

MediaKeySystemAccess

CDM

Decryptor Element



13

EME – Data Flow

Application

MediaKeySession

Media Player

CDM

Decryptor Element

License Authority



14

GStreamer MSE Library



15

GStreamer MSE Library
● Allows applications to use MSE API without a web browser library

● Based on existing WebKit implementation
– Converted from C++ to GObject C and simplified

● Implementation relies on appsrc, parsebin, and appsink
● Adds custom msesrc element handling mse:// URI scheme

● Integrates with GstPlay / playbin



16

GStreamer MSE – Application Usage
● Create Pipeline with msesrc element

– playbin3 uri=mse:// should be enough

● Create Media Source, attach to msesrc
● Add Source Buffers to Media Source

● Play pipeline

● Feed Source Buffers with data



17

GStreamer EME Library



18

Protected Media in GStreamer
● What exists now inside GStreamer?

– Demuxers

● Tag buffers with GstProtectionMeta
● Raise GST_EVENT_PROTECTION
● Supported demuxers: MP4, WebM, DASH, MSS

– Decryptors?



19

GStreamer EME Library
● A set of Interfaces and Data Models

– GstMediaKeySystemAccess - Provides GstMediaKeys instance

– GstMediaKeys - CDM instance wrapper, manages lifecycle of sessions

– GstMediaKeySession - Groups related keys, manages lifecycle of keys

● Also defines a convention for Content Decryption Module plugins

– Protection System - Entry point

● API relies heavily on GstPromise, matching W3C EME's use of JS Promises



20

GStreamer EME – Application Usage
● Set up pipeline with decryptor element or just use GstPlay
● Instantiate supported protection system(s)

– Request GstMediaKeySystemAccess
– Create GstMediaKeys

● Watch the Bus for GST_MESSAGE_NEED_CONTEXT and inform origin element of preferred protection 

system
● Watch the Bus for eme-encrypted message from decryptor element
● Asynchronously answer contained promise with appropriate GstMediaKeys instance
● Create session for each new unit of Initialization Data
● Request License from License Authority
● Feed License Authority's response back to Session



21

GStreamer EME – CDM Integration
● Multiple options

– Write a plugin:

● Implement GstMediaKeySystemAccess, GstMediaKeys, GstMediaKeySession
● Implement custom decryptor element

– Re-use an OpenCDM plugin



22

GStreamer EME – CDM Integration
● Using Widevine CDM included with Web Browsers

● Create OpenCDM module wrapper
– Module C++ Headers are distributed in browser source tree

– Discover local installation path

– Link at runtime using GModule

● Application
– Instantiate CDM

– Handle Messages

– Communicate with License Authority



23

Development Challenges



24

Development Challenges - MSE
● Porting from WebKit

– Removal of HTML/DOM/JavaScript concepts

– Removal of threading model of WebKit

– Simplification of design - WebKit is designed to support multiple implementations 

of MSE for platforms that don't rely on GStreamer

● Conformance Testing
– Existing Web Platform Tests rely on web browser



25

Development Challenges - EME
● Reliance on GstPromise: lots of utility code to pack/unpack 

GstStructure fields

● Decryptor elements: GStreamer elements must advertise 

supported key systems statically
– CDMs might not have a mechanism to enumerate supported key systems

– Issue for implementations that are abstractions over multiple CDMs



26

Development Status
● MSE: 

– https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/2992

● EME:
– Coming Soon

https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/2992


27

Thank you!



28

We are hiring
col.la/careers

http://col.la/careers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

