
Server-side Media Processing
with GStreamer

Arun Raghavan

We all love GStreamer on our

 – laptops
 – phones
 – speakers
 – TVs
 – space robots

Today, let's talk about
server-side processing

daily.co

 – Calling Platform as a Service ("CPaaS")
 – WebRTC SDK for clients
 – SFU in the backend
 – A whole bunch of features on top

mediasoup as the SFU

 – Powerful set of features
 – Built on Producer, Consumer, Transport
 – Routes WebRTC clients between each other
 – Can also route plain RTP-over-UDP

media worker can scale independently

Live streaming & recording

 – Consume a set of audio/video streams
 – Mix/composite them
 – Output to
 – RTMP
 - S3 (cloud storage)
 - HLS

Live streaming & recording: approaches

 Record on client
 Headless participant (or Chrome-in-the-cloud)
 Remote rendering pipeline

media worker runs a live streaming / recording pipeline

Live streaming & recording: learning

 – React-loop + custom renderer
 – Video processing performance
 – Judicious use of queues + monitoring
 – Dynamic pipelines vs. StreamProducer
 debuggability vs. resilience
 – rtmp2sink retries: GAsync is hard
 – awss3hlssink: HLS for "free"

Recording raw tracks

 – Simpler version of the recording pipeline
 – Record each track independently
 – Review/process/composite later

that awss3sink sure is handy

Recording raw tracks: learning

 – Streaming to S3 adds resilience
 – No way to correlate tracks initially
 – webmmux cluster-timestamp-offset=...
 – Need to upstream patches for demux

Media ingestion

 – We can also feed media back in
 – Shared media player in a call
 – Pre-recorded content, hold music, ...

Media ingestion: learning

 – Simulcast layers via rtpfunnel
 – Need to care about live vs. non-live
 – Easy enough using clocksync

SIP

 – Hopefully you saw Sanchayan's talk
 – We have all the pieces for media in/out now
 – Lots of reuse for talking to phones
 and physical conference equipment

this time the media worker consumes and produces media

SIP: learning

 – A lot of application logic to reuse
 – Refactored as bins
 – Modeling webrtcbin after
 RTCPeerConnection was a good choice

General learning

 – Observability is important
 – Understanding threading model key for
 profiling
 – Bins are handy for abstracting application logic
 – JSON >>> GstStructure for API

Questions?

♥

