Server-side Media Processing
with GStreamer

Arun Raghavan

asympt.tic



We all love GStreamer on our

- laptops
- phones
- speakers

- Vs

- space robots



Today, let’s talk about
server-side processing



daily.co

- Calling Platform as a Service ("CPaaS’)
- WebRTC SDK for clients

- SFU in the backend

- Awhole bunch of features on top
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mediasoup as the SFU

- Powerful set of features

- Built on Producer, Consumer, Transport

- Routes WebRTC clients between each other
- Can also route plain RTP-over-UDP
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media worker can scale independently



Live streaming & recording

- Consume a set of audio/video streams
- Mix/composite them
- Output to

- RTMP

- S3 (cloud storage)
- HLS



Live streaming & recording: approaches

X Record on client
X Headless participant (or Chrome-in-the-cloud)
v Remote rendering pipeline
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media worker runs a live streaming / recording pipeline
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Live streaming & recording: learning

- React-loop + custom renderer

- Video processing performance

- Judicious use of queues + monitoring

- Dynamic pipelines vs. StreamProducer
debuggability vs. resilience

- rtmp2sink retries: GAsync is hard

- awss3hlssink: HLS for "tree’



Recording raw tracks

- Simpler version of the recording pipeline
- Record each track independently
- Review/process/composite later
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Recording raw tracks: learning

- Streaming to S3 adds resilience
- No way to correlate tracks initially

- webmmux cluster-timestamp-offset=...

- Need to upstream patches for demux



Media ingestion

- We can also feed media back in
- Shared media player in a call
- Pre-recorded content, hold music, ...
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Media ingestion: learning

- Simulcast layers via rtpfunnel
- Need to care about live vs. non-live
- Easy enough using clocksync



SIP

- Hopetully you saw Sanchayan's talk
-We have all the pieces for media in/out now
- Lots of reuse for talking to phones

and physical conterence equipment
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this time the media worker consumes and produces media



SIP: learning

- A lot of application logic to reuse

- Refactored as bins

- Modeling webrtcbin after
RTCPeerConnection was a good choice



General learning

- Observability is important

- Understanding threading model key for
profling

- Bins are handy for abstracting application logic
- JSON >>> GstStructure for AP



Questions?
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