Server-side Media Processing
with GStreamer

Arun Raghavan

asympt.tic

We all love GStreamer on our

- laptops
- phones
- speakers

- Vs

- space robots

Today, let’s talk about
server-side processing

daily.co

- Calling Platform as a Service ("CPaaS’)
- WebRTC SDK for clients

- SFU in the backend

- Awhole bunch of features on top

ez
producer
_

\ —

/r \ producer

producer / ;———J
[] e 7 e
\ ‘\% consumer
_

[consumer / a)
\

l consumer]

mediasoup as the SFU

- Powerful set of features

- Built on Producer, Consumer, Transport

- Routes WebRTC clients between each other
- Can also route plain RTP-over-UDP

WebRTC

//// /////”
"/

,//
'://v /
‘S

7/

clhient 7007
LSS /g7

Medlia
P POQQSSMﬁ

WebRTC W // /////

///
client

£

WebRTC

client

AN

SFU

[

client

WebRTC j / 7

N

V

e

_

Media
Pr*oce,ssmﬂ

~

4

media worker can scale independently

Live streaming & recording

- Consume a set of audio/video streams
- Mix/composite them
- Output to

- RTMP

- S3 (cloud storage)
- HLS

Live streaming & recording: approaches

X Record on client
X Headless participant (or Chrome-in-the-cloud)
v Remote rendering pipeline

WebRTC

client

\ 7

SFU

client

WebRTC j / 7

I\
V

p

_

Medhia
Processwj

~

74

media worker runs a live streaming / recording pipeline

e

—

y

video
decode

audio
decode

=

eact-basged
e_V\3| ne

mixX

mux

mux

S3

Live streaming & recording: learning

- React-loop + custom renderer

- Video processing performance

- Judicious use of queues + monitoring

- Dynamic pipelines vs. StreamProducer
debuggability vs. resilience

- rtmp2sink retries: GAsync is hard

- awss3hlssink: HLS for "tree’

Recording raw tracks

- Simpler version of the recording pipeline
- Record each track independently
- Review/process/composite later

VMY QM

4 ™\ 7
—==\ #8 T—=)
G 7, _
7 ™ 7
—= | depay — I
a v _
7)) 0
—= depay | |
K000 \&
00 _ U
“that awss3sink sur

D)

v

N AN &£

is h

~

S3

Recording raw tracks: learning

- Streaming to S3 adds resilience
- No way to correlate tracks initially

- webmmux cluster-timestamp-offset=...

- Need to upstream patches for demux

Media ingestion

- We can also feed media back in
- Shared media player in a call
- Pre-recorded content, hold music, ...

video

urisource decode

audio
encode ’tr‘ack

Media ingestion: learning

- Simulcast layers via rtpfunnel
- Need to care about live vs. non-live
- Easy enough using clocksync

SIP

- Hopetully you saw Sanchayan's talk
-We have all the pieces for media in/out now
- Lots of reuse for talking to phones

and physical conterence equipment

SFU - = 7

e — /[]

PSTN client

j/\ 7 2 J\[

J

this time the media worker consumes and produces media

SIP: learning

- A lot of application logic to reuse

- Refactored as bins

- Modeling webrtcbin after
RTCPeerConnection was a good choice

General learning

- Observability is important

- Understanding threading model key for
profling

- Bins are handy for abstracting application logic
- JSON >>> GstStructure for AP

Questions?

v

