
The evolution of HTTP based
Signaling for WebRTC in GStreamer

Taruntej Kanakamalla

1

This talk is about ...

Brief about WebRTC and Signaling

WebRTC plugins in GStreamer

Introduction to the standards WHIP and WHEP

Initial version of plugins for WHIP and WHEP clients

Signallable in the rswebrtc plugin

Adaptation of WHIP Client and WHIP Server

Future plans for WHIP and WHEP in GStreamer

2

Taruntej Kanakamalla
Note
- Quick brush up about WebRTC and Signaling
- Elements in GStreamer for WebRTC currently
- Then talk about WHIP and WHEP standards
- Implementations of WHIP and WHEP which is the core of the talk
- move to WHIP Client and Server Signalers implementaions
- How we used Signaler implementation for writing WHIP and WHEP functionalities
- And then I will wind up with what is the current progress and roadmap for the HTTP based signaling

About me

Consultant - Open Source software

Asymptotic Inc. helps customers build Multimedia solutions

GStreamer, PulseAudio, FreeSWITCH etc

Experience involving low level firmware to user level

applications

From Hyderabad, India

3

Taruntej Kanakamalla
Note
- I work as an Open Source software consultant
- I work at Asymptotic. We build multimedia solutions around GStreamer and other frameworks
- My work over last 2-3 years has been around GStreamer, PulseAudio and FreeSwitch
- Overall experience involved from low level firmware in Embededded systems to user level applications in standard desktops and server
- I am basically from Hyderabad - India

So jumping right in

What is WebRTC?

Real Time Communication for Web

Peer-Peer Exchange of Audio/Video/Data

Mandatory encryption – DTLS and SRTP

Inbuilt support in all modern browsers

Quick and easy with W3C PeerConnection API

Different libraries available for native apps

4

Taruntej Kanakamalla
Note
- Expands to RTC for Web
- Peer to Peer exchange of Audio, Video or Plain data
- Encryption is Mandatory in the WebRTC. It uses DTLS for the transport layer encryption and SRTP for the security of RTP packets that are exchanged
- In built browser support. Bringing up a browser based simple video chat application is easy with JS using W3C PeerConnection API
- Also we have multiple libraries, along with GStreamer, available for native apps.

What is Signaling?

A process of exchanging control information between two

devices

Media codecs, Channels, Formats etc. (SDP)

Connectivity details (ICE candidates)

WebRTC does not mandate any standard protocol

Can use WebSockets, gRPC, HTTP etc

Uses SDP O/A (Offer/Answer) model

5

Taruntej Kanakamalla
Note
<style scoped>
 ul {
 font-size: 35px
}
</style>

- two entites can arrive at agreement on the multimedia session between them
- SDP - Session Description Protocol
- ICE - Internet connectivity Establishment : Each ICE candidate describes - the protocol and NAT routing needed for a peer to be able to communicate with a remote device
- SDP is basically O/A model. A peer sends its own SDP as offer and the remote peer responds with its SDP as an answer

GstWebRTC

webrtcbin - GStreamer’s implementation

Authored by Centricular Ltd; First merged in 2017

Built for native apps, servers etc

Uses libnice, SRTP, DTLS and RTP plugins

Written to be inline with the W3C PeerConnection API

6

Signaling

Caller Signaler Callee

Register

Register

webrtcbin-callee

webrtcbin-caller

on-negotiation-needed

create-offer

SDP Offer

set-local-description

7

HTTP for Signaling

Lack of standardized signaling in WebRTC

Can’t use as a plug-n-play solution

Obstacle for adoption in broadcasting and streaming industry

Standards WHIP and WHEP aim to fill this gap

8

Taruntej Kanakamalla
Note
* Need interoperability between different pieces of H/W and S/W

What is WHIP?

WebRTC-HTTP Ingestion protocol (WHIP)

WebRTC producer → HTTP Endpoint → Media Server

to ingest (push) a stream to media server

SendOnly

9

WHIP Session

https://www.ietf.org/archive/id/draft-ietf-wish-whip-09.html

 +-------------+ +---------------+ +--------------+ +---------------+
 | WHIP client | | WHIP endpoint | | Media Server | | WHIP resource |
 +--+----------+ +---------+-----+ +------+-------+ +--------|------+
 | | | |
 | | | |
 |HTTP POST (SDP Offer) | | |
 +------------------------>+ | |
 |201 Created (SDP answer) | | |
 +<------------------------+ | |
 | ICE REQUEST | |
 +--------------------------------------->+ |
 | ICE RESPONSE | |
 |<---------------------------------------+ |
 | DTLS SETUP | |
 |<======================================>| |
 | RTP/RTCP FLOW | |
 +<-------------------------------------->+ |
 | HTTP DELETE |
 +-->+
 | 200 OK |
 <---x

10

https://www.ietf.org/archive/id/draft-ietf-wish-whip-09.html

WHIP API

POST /endpoint/

Request Body : SDP Offer

Response Body : SDP Answer

Response Headers :

Location: Resource URL

Link: STUN/TURN servers

PATCH /resource/id

ICE Restart

ICE Trickle

DELETE /resource/id

Teardown

11

Taruntej Kanakamalla
Note
Trickle ICE effectively shortens the time required to conduct ICE connectivity checks. This mechanism gets its name from the fact that it ‘trickles’ the candidates from the commencement of the session until a connection is established, thereby streamlining the entire process.

What is WHEP?

WebRTC-HTTP Egress Protocol (WHEP)

WebRTC consumer → HTTP Endpoint → Media Server

to consume a stream from a media server

RecvOnly

12

WHEP Session

https://www.ietf.org/id/draft-murillo-whep-02.html

 +-------------+ +---------------+ +--------------+ +---------------+
 | WHEP Player | | WHEP Endpoint | | Media Server | | WHEP Resource |
 +--+----------+ +---------+-----+ +------+-------+ +--------|------+
 | | | |
 | | | |
 |HTTP POST (SDP Offer) | | |
 +------------------------>+ | |
 |201 Created (SDP answer) | | |
 +<------------------------+ | |
 | ICE REQUEST | |
 +--------------------------------------->+ |
 | ICE RESPONSE | |
 |<---------------------------------------+ |
 | DTLS SETUP | |
 |<======================================>| |
 | RTP/RTCP FLOW | |
 +<-------------------------------------->+ |
 | HTTP DELETE |
 +-->+
 | 200 OK |
 <---x

13

https://www.ietf.org/id/draft-murillo-whep-02.html

WHEP API

POST /endpoint

Request Body : SDP Offer

Response Body : SDP Answer

Response Headers :

Location: Resource URL

Link: STUN/TURN servers

PATCH /resource/id

ICE Trickle

ICE Restart

DELETE /resource/id

Teardown

14

Taruntej Kanakamalla
Note
exactly same as whip api but to whep endpoint

Trickle ICE effectively shortens the time required to conduct ICE connectivity checks. This mechanism gets its name from the fact that it ‘trickles’ the candidates from the commencement of the session until a connection is established, thereby streamlining the entire process.

WHEP extensions

Server Sent Events

server-to-client communication using WHATWG server sent events

active: indicating that there is an active publication

inactive: indicating that there is no active publication

layers: the video layers being published for the resource

viewercount: the number of viewers currently connected

WHEP player can request to create server-to-client event stream

Video Layer Selection

Allows WHEP Player to request a desired video layer or rendition

{ "encodingId": "1", "simulcastIdx": 1, "width": 640, "height": 360,

"spatialLayerId": 0, "temporalLayerId": 1,"bitrate": 557112 }

In cases SVC (scalable video codecs) and simulcast are supported by the server
15

WHEP extension API

POST /resource/id/sse

Request: Events List

Response: 200 OK

Response Header:

Location: sse url

POST /resource/id/layer

Request : Desired video layer

Response: 200 OK

16

webrtchttp plugin

Consists of two elements

whipsink - WHIP Client

whepsrc - WHEP Client

Client side implementations of WHIP and WHEP

Wrappers around webrtcbin element

Simple and transparent HTTP clients

Do not bother about encoding and RTP payloading

Written in Rust language

17

webrtchttp plugin

Tested against various media server implementations

Cloudflare

Dolby IO

Janus

MediaMTX

Live777

18

whipsink

WebRTC producer i.e., SendOnly

accepts an RTP encoded stream from upstream

Pad Templates:
 SINK template: 'sink_%u'
 Availability: On request
 Capabilities: application/x-rtp

Example Pipeline:

gst-launch-1.0 whipsink name=whip auth-token=$WHIP_TOKEN whip-endpoint=$WHIP_ENDPOINT \
videotestsrc ! videoconvert ! openh264enc ! rtph264pay ! whip.sink_0 \
audiotestsrc ! audioconvert ! opusenc ! rtpopuspay ! whip.sink_1

19

whipsink

Create offer and set local description:

self.webrtcbin.connect("on-negotiation-needed", false, {
...
 // define a promise which returns after offer is created
 let promise = gst::Promise::with_change_func(move |reply| {
 let offer_sdp = match reply {
...
 }
...
 }}
 self.webrtcbin.emit_by_name::<()>("set-local-description", &[&offer_sdp, &None::<gst::Promise>],
);
 })

 self.webrtcbin.emit_by_name::<()>("create-offer", &[&None::<gst::Structure>, &promise]);
});

20

Taruntej Kanakamalla
Note
Do not worry if you don't know much Rust. Just try to explain the flow

whipsink

Send Offer:

self.webrtcbin.connect_notify(Some("ice-gathering-state"), move |webrtcbin, _pspec| {
...
 match state {
 ...
 WebRTCICEGatheringState::Complete => {
 // We got all the ICE candidates in the SDP
 ...
 self_ref.send_offer().await
 ...
 }
...

HTTP POST:

async fn send_offer(&self) {
...
 wait_async(&self.canceller, self.do_post(offer_sdp), timeout).await
...
}

21

Taruntej Kanakamalla
Note
we wait for ICE state to complete here for the case of simplification

whipsink

Parse response and set remote description:

async fn parse_endpoint_response(
....
){
...
 match resp.status() {
 StatusCode::OK | StatusCode::CREATED => {

 set_ice_servers(&self.webrtcbin, resp.headers());
 ...
 resp.headers().get(reqwest::header::LOCATION);
 ...
 //extract the SDP Answer from the response
 match resp.bytes().await {
 Ok(ans_bytes) => match sdp_message::SDPMessage::parse_buffer(&ans_bytes) {
 Ok(ans_sdp) => {

 let answer = gst_webrtc::WebRTCSessionDescription::new(
 gst_webrtc::WebRTCSDPType::Answer,
 ans_sdp,);

22

whepsrc

WebRTC consumer i.e., RecvOnly

Provides an RTP encoded stream to downstream

Pad Templates:
 SRC template: 'src_%u'
 Availability: Sometimes
 Capabilities: application/x-rtp

Example pipeline:

gst-launch-1.0 whepsrc name=whep auth-token=$WHEP_TOKEN whep-endpoint=$WHEP_ENDPOINT \
whep.src_0 ! rtph264depay ! ... ! autovideosink
whep.src_1 ! rptopusdeay ! ... ! autoaudiosink

23

Taruntej Kanakamalla
Note
The signals and methods calls performed in whepsrc are same as whipsink

rswebrtc plugin

High level WebRTC elements

webrtcsink - WebRTC producer

webrtcsrc - WebRTC consumer

The "all-batteries included" WebRTC solution

Inbuilt support for raw and encoded streams

Inbuilt congestion control algorithm

Continuous improvements and feature additions

...

24

Signallable

Interface for Signaling

WebRTC elements can implement their own protocol with this

Makes easy to write custom protocols with almost no change in the core

(sink/src)

WebSockets by default

Operates on a set of signals that the WebRTC elements and Signaler code can

communicate with

25

Taruntej Kanakamalla
Note
talk about codec discovery process in webrtcsink

Signallable

Signals

 consumer-added
 consumer-removed
 end-session
 error
 producer-added
 producer-removed
 request-meta
 send-ice
 send-session-description
 session-requested
 session-started

Action Signals

 handle-ice
 session-description
 session-ended
 shutdown
 start
 stop

26

Taruntej Kanakamalla
Note
<style scoped>
 ul {
 font-size: 28px;
}
pre {
 font-size: 0.7rem;
 overflow-x:scroll;
}
</style>
BaseWebRTCSink
- Base sink element for all elements using custom producer type Signalers
- Enables elements to reuse `webrtcsink` and override wherever needed
- Provision to derive new elements from the base
- Amazon KVS, WHIP Client Signaler and LiveKit signalers are built using this

```rs
glib::wrapper! {
  pub struct BaseWebRTCSink(ObjectSubclass<imp::BaseWebRTCSink>)
  @extends gst::Bin, gst::Element, 
  gst::Object, @implements gst::ChildProxy gst_video::Navigation;
}
glib::wrapper! {
pub struct WebRTCSink(ObjectSubclass<imp::WebRTCSink>)
  @extends BaseWebRTCSink, gst::Bin, 
  gst::Element, gst::Object, @implements gst::ChildProxy, gst_video::Navigation;
}
```

<style scoped>
pre {
 font-size: 0.7rem;
 overflow-x:scroll;
}
</style>
BaseWebRTCSink
```rs
pub struct BaseWebRTCSink {
  state: Mutex<State>,
  settings: Mutex<Settings>,
}
```
```rs
struct Settings {
  video_caps: gst::Caps,
  audio_caps: gst::Caps,
  turn_servers: gst::Array,
  stun_server: Option<String>,
  cc_info: CCInfo,
  do_fec: bool,
  do_retransmission: bool,
  enable_data_channel_navigation: bool,
  meta: Option<gst::Structure>,
  ice_transport_policy: WebRTCICETransportPolicy,
  signaller: Signallable,
}
```

That brings us to the Signallable Interface

Signallable

Methods, overridden based on the signaling protocol

fn request_meta(_iface: &super::Signallable) -> Option<gst::Structure> {}

fn start(_iface: &super::Signallable) {}

fn stop(_iface: &super::Signallable) {}

fn send_sdp(
 _iface: &super::Signallable,
 _session_id: &str,
 _sdp: &gst_webrtc::WebRTCSessionDescription,){}

fn add_ice(
 _iface: &super::Signallable,
 _session_id: &str,
 _candidate: &str,

27

Taruntej Kanakamalla
Note
increase font size of the code block

WHIP Client as a Signaler

A newer version of whipsink adapting Signallable. Thanks to Mathieu

To leverage all good things from webrtcsink e.g., congestion control

whipclientsink (a.k.a whipwebrtcsink)

Implements Signallable Interface

gst-launch-1.0 whipclientsink name=whip signaller::whip-endpoint=$WHIP_ENDPOINT \
videotestsrc ! whip. \
audiotestsrc ! whip.

impl ObjectImpl for WhipWebRTCSink {
 fn constructed(&self) {
...
 let _ = ws.set_signaller(WhipClientSignaller::default().upcast());
 }}

28

Taruntej Kanakamalla
Note
notice we feed the raw streams directly to the whipclientsink we don't need to encode and RTP payload it, it is taken care by webrtcsink. need to point it to right WHIP endpoint

```rs
glib::wrapper! {
  pub struct WhipClientSignaller(ObjectSubclass<imp::WhipClient>) @implements Signallable;
}
```

set_signaller.This is all we need for webrtc functionality
rest all will be taken care by webrtcsink

WhipClient implementation

Does all the WHIP Client related functions in the implementation. Same as

whipsink

impl WhipClient {
...
...
 // exactly same as whipsink
 async fn send_offer(&self, webrtcbin: &gst::Element) {
 ...
 ...
 }

 async fn do_post(&self, offer: gst_webrtc::WebRTCSessionDescription, webrtcbin: &gst::Element) {
 ...
 ...
 }

 async fn parse_endpoint_response(...) {
 ...

29

Taruntej Kanakamalla
Note
Actual WHIP functions here.
Almost Same functions we discussed earlier in whipsink

Signallable for WhipClient

impl SignallableImpl for WhipClient {
fn start(&self) {
 ...
 ...
 // wait for underlying webrtcsink to signal consumer-added
 self.obj().connect_closure("consumer-added",
 false,
 glib::closure!(|signaller: &super::WhipSignaller,
 _consumer_identifier: &str,
 webrtcbin: &gst::Element| {
...
 webrtcbin.connect_notify(Some("ice-gathering-state"), move |webrtcbin, _pspec| {
 match state {

 WebRTCICEGatheringState::Complete => {
...
 obj.imp().send_offer(&webrtcbin).await

 }
 ...
);

...
 // lets webrtcsink create a consumer-pipeline
 // passing None makes it generate offer
 self.obj().emit_by_name::<()>("session-requested",
 &[&"unique",
 &"unique",

30

Taruntej Kanakamalla
Note
Signaller method implementations. only start is shown here, but we can write other methods based on the need

WhipServer Implementation

whipserversrc element for WHIP Endpoint plus Media Server

The other side of the WHIP story

Based on webrtcsrc

Merge request in progress

Initial version can accept stream from only single producer (WHIP client)

gst-launch-1.0 whipserversrc signaller::host-addr=$WHIP_ENDPOINT name=ws ! \
queue ! videoconvert ! autovideosink \
ws. ! queue ! audioconvert ! autoaudiosink

31

WhipServer Implementation

// called when webrtcsrc emits `webrtcbin-ready`
pub fn on_webrtcbin_ready(&self) -> RustClosure {
 webrtcbin.connect_notify(Some("ice-gathering-state"), move |webrtcbin, _pspec| {
 match state {
 ...
 WebRTCICEGatheringState::Complete => {
 let ans = webrtcbin.property::<Option<WebRTCSessionDescription>>("local-description")
 tx.send(ans).unwrap()
 }

async fn post_handler(
 &self,
 body: warp::hyper::body::Bytes,
) -> Result<http::Response<warp::hyper::Body>, warp::Rejection> {

 // communicate the peer id with webrtcsrc
 self.obj().emit_by_name::<()>("session-started", &[&ROOT, &peer_id]);

 let offer_sdp = gst_sdp::SDPMessage::parse_buffer(body.as_ref());
 // Create an SDP of Offer type and set it on the webrtcbin

 self.obj().emit_by_name::<()>("session-description", &[&"unique", &offer]);

 // wait for the answer through tx.send in on_webrtcbin_ready
 let ans = rx.recv_timeout(Duration::from_secs(wait_timeout as u64))
 // unwrap and send response
}

async fn delete handler(&self id: String) -> Result<impl warp::Reply warp::Rejection> {

32

Taruntej Kanakamalla
Note
talk about tx.send in closure

Existing challenges

Handling concurrent multiple producers and multiple sessions unsupported yet in

webrtcsrc

sends EOS downstream when a session ends

applications need to launch multiple instances of whipserversrc for concurrent

sessions

increases the complexity at application level

33

Taruntej Kanakamalla
Note
* What are the different use cases for `whipserversrc` ?
 -

- The `webrtcsink` and `webrtcsrc` are designed in a way the signalling is always asynchronous like a WebSocket
- So the challenge we had was that we get the offer from WHIP client and we set it is as remote description on the webrtcbin. But there is no defined way to block the http handler to know the answer is created and how long to wait before sending the reponse
- So we had to setup a rx,tx channel where once we do set remote description, we go in timed wait for a rx signal. And in another context when then webrtcbin is ready with the answer and ICE candidates we do tx of the signal so the timed wait is unblocked and the response to POST method will be sent with the actual answer
- But HTTP server needs to send response in a synchronous manner

What’s further?

Implement WHEP Server and WHEP Client as Signalers

whepclientsrc - WHEP client as a webrtcsrc type element

whepserversink - WHEP server as a webrtcsink element

Add support for multiple producers in webrtcsrc

Add multi client support in whipserversrc

webrtcsink and webrtcsrc to accept and produce RTP streams respectively

retire whipsink and whepsrc eventually

34

Finally... the entire ecosystem

Media processing

whipclientsink

whipclientsink

whipserversrc

whepserversink

whepclientsrc

whepclientsrc

whepclientsrc

other sources

other sinks

35

Taruntej Kanakamalla
Note
talk about how an end-end system can be done entirely using HTTP signalling standard WHIP and WHEP within gstreamer.

Questions?

36

