ICE

How to find your way through the Internet

2023 GStreamer conference

Matthew Waters

25 September 2023

(@Centricular

Goal

Create a bidirectional communication channel between two
internet connected devices as efficiently and fast as
reasonable

(@Centricular

The Internet Mail System

Addresses

2: wlplsO: <BROADCAST,MULTICAST
link/ether a8:7e:ea:ab6:e4:9
inet 192.168.20.17/24 brd 1

valid_Lft 56046sec prefe
inet6 fe80::a8f7:1f8al:e375:
valid_Lft forever prefer

(@Centricular

Solution 1

1. Send data to peer address

2. Done
Source -{ Destination
104.250.%.X 109.167.X.X

(@ Centricular

Problem

e Hosts are not always directly connected/accessible

e There may be an intermediate address translation layer that needs to be
coerced into sending data to/from the correct device

(@Centricular

Problem: NAT

Network Address Translation

e Estimated that 60%-80% of all devices are behind some form of NAT
e https://en.wikipedia.org/wiki/Network_address_translation

104.250.x.x 109.167.x.x

Source —b[NAT } >{ Destination

192.168.0.x 192.168.0.1/24

(@Centricular

https://en.wikipedia.org/wiki/Network_address_translation

NAT Traversal (Or NAT behaviour)

e What happens to packets when traversing the NAT?

(@Centricular

It Depends

(@Centricular

What a NAT does

e Straddles 2 different network segments
o May be called private network and public network

o Or internal/external
e Rewrites IP address and port across the private/public boundary

e Adds internal mapping of the 5-tuple (or some subset) so response can be
successfully sent to the requestor
104.250.x.% 109.167.x.x

Source —b[NAT } >{ Destination

192.168.0.x 192.168.0.1/24

(@Centricular

What constitutes a 'session’' (from a NAT's point
of view)

e Protocol (UDP/TCP/etc)
e Source IP Address

e Source Port

e Destination IP Address
e Destination Port

e aka 5-tuple

(@Centricular

Solution 2

Have the device behind the NAT send initial data

e Client/Server model
o Used by e.g. HTTP/FTP/SMTP/IMAP/etc

e Adds mapping on the NAT so response from the server is correctly routed
104.250.x.x 109.167.x.x

‘ Source —b[NAT } >{ Destination

192.168.0.x 192.168.0.1/24

(@Centricular

Problem: More NAT

This is where it gets interesting

104.250.x.x 109.167.x.X
Source —-[NAT } b[NAT H Destination
192.168.0.x 192.168.0.1/24 10.0.0.1/724 10.0.0.x

(@ Centricular

Problem: More NAT

1. What IP address to send to?
2. How to let data through both NATSs?

104.250.x.x 109.167.x.X
Source —-[NAT } b[NAT H Destination
192.168.0.x 192.168.0.1/24 10.0.0.1/24 10.0.0.x

(@ Centricular

Solution: What IP address to send to?

Ask an external (STUN) server what IP address it sees the
request from

e STUN: Session Traversal Utilities for NAT

e A client/server protocol

e Message based with extensible attributes

e One of the messages returns the address and port the server sees

e LOow cost
104.250.%.% 109.167.%.x

‘ Source —-[NAT w3-12“-57"-“ NAT H Destination

192.168.0.x 192.168.0.1/24 STUN 1000.1/24 10.0.0x
(@Centricular Server

Solution: How to let data through both NATSs?

Both peers send STUN requests to their peer at the same
time
e First packet hitting the peer's NAT will fail, but add the NAT mapping to the

source's NAT

e Packet from the peer received by the source might succeed
o On success, source tries again and will succeed (as all NAT mappings
exist)

(@Centricular

However!

This only works if the NAT mapping does not depend on the
destination address and/or port

e Address (and Port) Dependent Mapping in RFC4787
e NAT may create a different external address/port for each 5-tuple
e Only a problem if both NAT exhibit this behaviour

e Not the common case or recommended behaviour

104.250.x.x 109.167.%.%
Source —-[NAT } »{ NAT H Destination
192.168.0.x 192.168.0.1/24 10.0.0.1/24 10.0.0.x%

(@Centricular

Problem: NAT mappings that depend on the
destination address/port

e This case is where only using a STUN server fails

e Cannot rely on off-path packets to do NAT hole punching

(@Centricular

Solution: TURN

e TURN: Traversal Using Relays around NAT
e Send all data through intermediate server

e High bandwidth costs
104.250.x.x 109.167.%.%

Source -[NAT 13.120.67.x NAT]47‘ Destination
192.168.0.x 192.168.0.1/24 TURN 10.0.0.1/24 10.0.0.x
Server

(@ Centricular

Solution: TURN

e Solves connectivity in many different network topologies
o Two Address (and Port) Dependent Mapping NATS

o IPv4-only connecting with a IPv6-only device
o UDP-only connecting with a TCP-only device

e A fallback to the client/server model

(@Centricular

Putting it all together

ICE (Interactive Connectivity Establishment) Overview

1. Gathering
2. Try connecting (Connection Checks)

3. Choose a connection (Nomination)

(@Centricular

Gathering Candidates

e Gather all the addresses we can send from
o Host IP address

o Ask external STUN server for the NAT external IP address/port
o Allocate address/es on a TURN server

e Send all of these to the peer
o Optionally as they arrive (trickle-ICE)

(@Centricular

Candidate

e Component ID (RTP/RTCP)

e Protocol (UDP/TCP)

e [P address

e Port

e Priority

e Candidate type (Host, STUN, Relay)
e Username

e Foundation

(@Centricular

Try connecting (Connection Checks)

e For each local and remote candidate combine them in priority order to create
pairs
o Send a binding request from the local socket, to the remote address

o If success response, we have a valid pair

(@Centricular

Error cases

e Timeout
e Not STUN response
e Missing STUN attributes

e Response not from address that was sent to

e STUN error code
o Role conflict

o QOther error

(@Centricular

Choosing a connection (Nomination)

e Once enough valid pairs (or some other criteria, e.g. timeout)

e Controlling agent nominates one of its valid pairs by sending another STUN
binding request with a special STUN attribute (Regular Nomination)

e \We have a successful connection!

(@Centricular

Standalone Implementations

e |ibnice - GODbject/C - used by webrtcbin/janus -
https://gitlab.freedesktop.org/libnice/libnice/

e icedj- Java - used by Jitsi - https://github.com/jitsi/ice4j
e libjuice - C- https://github.com/paullouisageneau/libjuice
e librice - Rust - very new - https://github.com/ystreet/librice

e webrtc-ice - Rust port of Go code - https://github.com/webrtc-rs/webrtc/

(@Centricular

https://gitlab.freedesktop.org/libnice/libnice/
https://github.com/jitsi/ice4j
https://github.com/paullouisageneau/libjuice
https://github.com/ystreet/librice
https://github.com/webrtc-rs/webrtc/

Thanks

o ystreetOO on #gstreamer on OFTC
e https.//discourse.gstreamer.org/u/ystreet00
e https://qgitlab.freedesktop.org/ystreet

e ystreetO0@floss.social on mastodon

(@Centricular

https://discourse.gstreamer.org/u/ystreet00
https://gitlab.freedesktop.org/ystreet

