
ICE

How to find your way through the Internet

2023 GStreamer conference

Matthew Waters

25 September 2023



Goal

Create a bidirectional communication channel between two
internet connected devices as efficiently and fast as
reasonable



The Internet Mail System

Addresses



Solution 1
1. Send data to peer address
2. Done



Problem

Hosts are not always directly connected/accessible

There may be an intermediate address translation layer that needs to be
coerced into sending data to/from the correct device



Problem: NAT

Network Address Translation

Estimated that 60%-80% of all devices are behind some form of NAT

https://en.wikipedia.org/wiki/Network_address_translation

https://en.wikipedia.org/wiki/Network_address_translation


NAT Traversal (Or NAT behaviour)
What happens to packets when traversing the NAT?



It Depends



What a NAT does
Straddles 2 different network segments

May be called private network and public network
Or internal/external

Rewrites IP address and port across the private/public boundary
Adds internal mapping of the 5-tuple (or some subset) so response can be
successfully sent to the requestor



What constitutes a 'session' (from a NAT's point
of view)

Protocol (UDP/TCP/etc)
Source IP Address
Source Port
Destination IP Address
Destination Port
aka 5-tuple



Solution 2

Have the device behind the NAT send initial data

Client/Server model
Used by e.g. HTTP/FTP/SMTP/IMAP/etc

Adds mapping on the NAT so response from the server is correctly routed



Problem: More NAT

This is where it gets interesting



Problem: More NAT
1. What IP address to send to?
2. How to let data through both NATs?



Solution: What IP address to send to?

Ask an external (STUN) server what IP address it sees the
request from

STUN: Session Traversal Utilities for NAT
A client/server protocol
Message based with extensible attributes
One of the messages returns the address and port the server sees
Low cost



Solution: How to let data through both NATs?

Both peers send STUN requests to their peer at the same
time

First packet hitting the peer's NAT will fail, but add the NAT mapping to the
source's NAT
Packet from the peer received by the source might succeed

On success, source tries again and will succeed (as all NAT mappings
exist)



However!

This only works if the NAT mapping does not depend on the
destination address and/or port

Address (and Port) Dependent Mapping in RFC4787
NAT may create a different external address/port for each 5-tuple
Only a problem if both NAT exhibit this behaviour
Not the common case or recommended behaviour



Problem: NAT mappings that depend on the
destination address/port

This case is where only using a STUN server fails
Cannot rely on off-path packets to do NAT hole punching



Solution: TURN
TURN: Traversal Using Relays around NAT
Send all data through intermediate server
High bandwidth costs



Solution: TURN
Solves connectivity in many different network topologies

Two Address (and Port) Dependent Mapping NATs
IPv4-only connecting with a IPv6-only device
UDP-only connecting with a TCP-only device

A fallback to the client/server model



Putting it all together

ICE (Interactive Connectivity Establishment) Overview

1. Gathering
2. Try connecting (Connection Checks)
3. Choose a connection (Nomination)



Gathering Candidates
Gather all the addresses we can send from

Host IP address
Ask external STUN server for the NAT external IP address/port
Allocate address/es on a TURN server

Send all of these to the peer
Optionally as they arrive (trickle-ICE)



Candidate
Component ID (RTP/RTCP)
Protocol (UDP/TCP)
IP address
Port
Priority
Candidate type (Host, STUN, Relay)
Username
Foundation



Try connecting (Connection Checks)
For each local and remote candidate combine them in priority order to create
pairs

Send a binding request from the local socket, to the remote address
If success response, we have a valid pair



Error cases
Timeout
Not STUN response
Missing STUN attributes
Response not from address that was sent to
STUN error code

Role conflict
Other error



Choosing a connection (Nomination)
Once enough valid pairs (or some other criteria, e.g. timeout)
Controlling agent nominates one of its valid pairs by sending another STUN
binding request with a special STUN attribute (Regular Nomination)
We have a successful connection!



Standalone Implementations
libnice - GObject/C - used by webrtcbin/janus -
https://gitlab.freedesktop.org/libnice/libnice/
ice4j - Java - used by Jitsi - https://github.com/jitsi/ice4j
libjuice - C - https://github.com/paullouisageneau/libjuice
librice - Rust - very new - https://github.com/ystreet/librice
webrtc-ice - Rust port of Go code - https://github.com/webrtc-rs/webrtc/

https://gitlab.freedesktop.org/libnice/libnice/
https://github.com/jitsi/ice4j
https://github.com/paullouisageneau/libjuice
https://github.com/ystreet/librice
https://github.com/webrtc-rs/webrtc/


Thanks
ystreet00 on #gstreamer on OFTC
https://discourse.gstreamer.org/u/ystreet00
https://gitlab.freedesktop.org/ystreet
ystreet00@floss.social on mastodon

https://discourse.gstreamer.org/u/ystreet00
https://gitlab.freedesktop.org/ystreet

