
1

GstPluginPylon
A Study of Dynamic Element
Properties in Basler Cameras

Miguel Taylor-Lopez

● Collaboration background

● Pylon and GenICam dynamic features

● The limitations of GObject Properties

● The alternative: Child Proxy

● Additional Solution Elements

● Outcome and impact

● Conclusions

● Questions

2

Agenda

● RidgeRun is a software development and service
integration company that specializes in embedded
systems across various industries.

● Our areas of expertise include:
○ Embedded Linux.
○ Artificial Intelligence.
○ Computer Vision.
○ FPGA.
○ GStreamer.

3

Collaboration Background

● Basler is an internationally leading manufacturer of
high-quality cameras and accessories for
applications in:

○ Factory automation.
○ Medicine.
○ Traffic.
○ Other markets.

4

● RidgeRun partnered with Basler to develop the
official GStreamer plug-in for Basler cameras

● Basler provides embedded cameras for NXP and
NVIDIA devices, featuring USB3 and MIPI interfaces.

Collaboration Background

5

Pylon and GenICam dynamic features

● Pylon SDK: Basler uses Pylon SDK for camera
inspection on runtime.

● Dynamic camera Information: With the SDK, we
can obtain dynamic information from connected
devices, including details like resolution, camera
type, and more.

● Integration Goal: To incorporate dynamic camera
discovery with pylon into Gstreamer.

● Dynamic properties: Depending on connected
cameras, properties will be added to the source
element to configure device-related features and
interfaces.

GenAPI Devices

6

The limitations of GObject Properties

● How is it done in v4l2src?

● User-Friendly Approach: Our goal was to create a
user-friendly element by installing only supported
features as properties, extracting property type, range,
and default values from feature descriptions.

● GObject Introspection: Use GObject introspection for
runtime object type determination.

● Dynamic Device Discovery when a new camera is
connected.

7

The limitations of GObject Properties

Why can't we just simply inspect all the properties as
regular GObject properties?

1. Diverse Camera Features

○ Cameras expose various features.

○ Not all properties apply universally.

2. Name Ambiguity

○ Multiple cameras share feature names.

○ Different definitions (ranges, types, etc.).

3. Variable Access Permissions

○ Cameras have different access flags.

○ Example: Gain may be writable only in certain
cameras

8

The alternative: Child Proxy

Using GstChildProxy: Our solution uses child proxy to
handle different cameras.

1. We installed a 'cam' property of type GObject.

2. The 'cam' property holds the currently active
camera, which is a Pylon Device wrapped as a
GObject.

3. Every Pylon device exposes its features as GObject
properties.

4. We 'build' the description of the top 'cam' property
dynamically by iterating through all the cameras,
reading their properties, and appending their
individual 'inspects'.

5. When the user selects a camera, it becomes
available as the 'cam' child.

6. We use child proxy notation to modify a property in
the actual camera.

7. This allowed us to have a 'stream' child with the
same behavior.

9

Solution Design

Device registration flow

1. gstpylonsrc initialization
2. Device registration
3. Feature installation
4. GParamSpec generation
5. Custom GObject types

Element inspection enhancements: gstpyloncache

10

 Additional Solution Elements

Memory Optimization

● The element creates a GstBuffer wrapper over Pylon
data.

● Supports external buffer pools and implements a
factory for NVMM and system mem buffers.

Caps negotiation

● An API call determines possible caps for a given
device.

● GStreamer configures the resulting caps in the
device using another API call.

11

Outcome and Impact

● User-Friendly Element: The result is an element that is user-friendly, allowing all camera features to be
configurable at the user level and well-documented in "gst-inspect."

● Developer-Friendly: Well-organized and properly documented properties make it easier for developers to
understand and maintain the codebase.

● Dynamic Adjustments: Users can easily change camera settings and configurations through property values,
allowing for dynamic adjustments without modifying the source code or the pipeline.

12

Outcome and Impact

Example: Selecting a camera

Example: Changing a property

Example: Load a configuration from a file

13

Conclusions and reference links

● We share a viable way to develop GStreamer element with dynamic properties using child proxy

● We achieved user-friendly, developer-friendly solution that enables dynamic camera control.

● Basler cameras and features implemented by RidgeRun can help NVIDIA Jetson and NXP i.MX8 users to bring
up their dynamic video applications.

Links

● GitHub repo: https://github.com/basler/gst-plugin-pylon

● Post: https://www.ridgerun.com/post/official-gstreamer-plug-in-for-basler-cameras

https://github.com/basler/gst-plugin-pylon
https://www.ridgerun.com/post/official-gstreamer-plug-in-for-basler-cameras

14

GstPluginPylon
A Study of Dynamic Element
Properties in Basler Cameras

Miguel Taylor-Lopez

