GStreamer Daemon:
Project Update

Miguel Taylor-Lopez

Introduction
Refcount Commands
Action support

New GstD clients
Other changes
Conclusion and Q&A

O O O O O

Introduction

RidgeRun

RidgeRun is a software development and service
integration company that specializes in embedded
systems across various industries.

Our areas of expertise include:
Embedded Linux.
Artificial Intelligence.
Computer Vision.
FPGA.
GStreamer.

O

O

O

gsid

GstD is a GStreamer framework for controlling
audio and video streaming via InterProcess
Communication (IPC).

Versatile control
Production deployment
Facilitates automation and remote control

Refcount Commands

The GstD refcount commands provide an alternative method to interact with pipelines, simulating the use of
reference counters.
It is essential to avoid mixing these commands with their regular counterparts to prevent unexpected behavior.
Currently, GstD implements the following commands based on the refcount concept:

o pipeline_create_ref

o pipeline_delete_ref

o pipeline_play_ref GstD Client

>

o pipeline_stop_ref

Consumer pipe

Pipeline
RC=2

GstD Client

>

Consumer pipe

—1 — 1

[
L
S L
i

Pipeline
RC=0

<&
O

Thread Safety

The refcount commands offer enhanced thread
safety when multiple processes share a single
pipeline.

In a scenario where multiple processes share a
pipeline, basic commands can lead to issues like
double creation, premature deletion, or
unexpected stops.

Even with inter-process communication, basic
commands do not guarantee thread safety.

GstD Client

GstD Client GstD
1. read pipeline
! >
|)
2. response
N T ’ 3. read pipeline
€
4. pipeline_create >)
5. response
: — >
E 6.pipeline created <
'€ e 7. pipeline_create ‘ \
8. ERROR
(. v)

Action Support

e GstD has extended its functionality with enhanced Action pipeline
Support.
e Actionsin GstD represent signals from applications to

elements. _ . ,
e These signals trigger specific behaviors or operations S'gnal{ data pointer] Action [data pointer]

within elements. x
\

GstD client

Application Scenarios

Application
N o/

e Media Streaming: Dynamic control of media streams.

e Automation: Implement complex workflows using signals
and actions.

Python Client for GstD

Python package.

Can be installed standalone with .deb or pip. '

Enables communication with GstD via TCP socket.
Includes a versatile logger class based on Python logging

module. pgthon

from pygstc.gstc import *
from pygstc.logger import *

gstd logger = CustomLogger('"gstd", loglevel="DEBUG")
gstd client = GstdClient(logger=gstd logger)

gstd client.pipeline create(...)

M

Other Changes

Migration to Meson.

Debian package generation.
More clients: HTTP, javascript
Deep notify support

Run GstD as an application

O MESON

Conclusions

Features Recap
Thread-Safe Implementation: Ensures safe interaction with pipelines from multiple clients.
More Client Options: Offers new methods for controlling GstD, including Python, HTTP, and JavaScript.
Improved Communication: Provides a more flexible communication approach with pipelines through actions.

Simplified Distribution: Transitioned to the Meson build system and .deb packaging, simplifying GstD
distribution.

GStreamer Daemon Project
Update

Miguel Taylor-Lopez

