
1

Writing compilers in Rust?

Faith Ekstrand

XDC 2023

2

About me
● Faith Ekstrand (@gfxstrand@mastodon.gamedev.place)
● First freedesktop.org commit: wayland/31511d0e, Jan 11, 2013
● Worked at Intel from June 2014 to December 2022

– NIR, Intel (ANV) Vulkan driver, SPIR-V NIR, ISL, other Intel bits→

● Now at Collabora since January 2022
– Work across the upstream Linux graphics stack, wherever needed
– Currently the lead developer / maintainer of NVK

3

Introducing NAK: The Nvidia
Awesome Kompiler

4

NAK: The Nvidia Awesome Kompiler
● Brand new back-end compiler for NVIDIA hardware
● Written in Rust
● Tries to be a model NIR user

– NIR passes are written in C
– Lower in NIR, keep the back-end simple

● Fully SSA until register allocation
– This register allocator actually works! 😂

5

Why Rust?

6

Why Rust?
● C is kinda terrible. We all know this…

– Those of us who prefer C know it best

● C++ is also terrible.
● Rust is less terrible?

– Powerful type system that doesn’t rely on virtual dispatch
– Has a large, well thought out standard library
– Borrow checker that catches real bugs

7

Wait, you don’t hate the borrow
checker?!?

Nope! Once you learn to work with it, the borrow checker
becomes a code review buddy, pointing out serious bugs.

Structuring your code to be borrow-checker-friendly often
results in better, more obviously correct code.

8

Why is NAK a good candidate for Rust?
● NAK is self-contained and doesn’t need to call out

– There are a few utilities we could maybe use
– Mostly, it just consumes NIR and produces a blob of bytes

● The Rust/C interface for NAK is 7 functions
– Not much to bindgen

● We only really need to read NIR
– More on that...

9

Can you write a compiler in it?

10

But can you write a compiler in it?
● That’s the question I set out to answer with NAK.
● And… Yes, yes you can!
● You do need to make friends with the borrow checker…

– Lots of hash maps
– Lots of SoA where you might do AoS in C/C++

11

Challenge 1: Reading NIR from Rust
● Not too bad if the Rust NIR usage is read-only
● NIR lowering passes and optimization loop are written in C
● Rust NIR wrappers take a &nir_shader (not mut!)

– Uses traits to add methods to NIR types
– You can do nb.iter_instrs() on a &nir_block
– Iterator for exec_list (thanks, Karol)
– srcs_as_slice() allows safe srcs[] array access
– NirSrc::as_uint() -> Option<u64> gets a u64 if a source is const

12

Challenge 2: Instruction sources
There are a lot of things we want:
● Clear meaning of sources

– inst.src[3] doesn’t really mean anything.
– This gets worse when there are indirects

● Fast, generic access to sources
– Passes like copy propagation don’t care what most sources mean

● Avoid extra array allocations
● Special sources like predicates and indirects
● Source modifiers (because, of course there are…)

13

Prior art: NIR
● Sources are in arrays
● Depend on documentation to know what’s what

– We all know just how well that works…

● We avoid extra allocation by using unsized arrays
– Rust can’t do that!

● Everything is an SSA def or const_index
– No modifiers
– No types

● We depend on nir_validate to ensure correctness

14

Prior art: ACO
● Each instruction is its own type

– This helps a bit with metadata like rounding modes

● Sources are still arrays
– Each instruction documents source meanings

● Avoid extra allocation using aco::span<T>
– Basically, it’s unsized arrays except way better and you can have more than one
– O(1) source access
– Supports all the usual C++ iterator stuff
– Can have large numbers of sources AND destinations
– Not implementable in Rust…

15

How to do this in Rust...
If I could have everything I want….
● Want to use Rust enums…

– Rust enums are tagged unions
– Safer than NIR’s enum and pointer cast

● Want descriptive names for sources
● Want typesafe metadata
● Want Rust’s type system to check stuff for me
● Want generic O(1) access to sources

16

You can't always get what
you want

17

But if you try sometimes,
well, you just might find
You get what you need...

18

Let’s look at some NAK code….

19

Let’s look at some NAK code….

Named
Destination

20

Let’s look at some NAK code….

Named
Sources

21

Let’s look at some NAK code….

Type
Decorations

22

Let’s look at some NAK code….

Magic

23

Let’s look at some NAK code….

Magic

24

Let’s look at some NAK code….

Even more
magic!

25

Let’s look at some NAK code….

26

This gets us most of what we want
● Good use of Rust enums
● Descriptive names for sources
● Typesafe metadata
● Rust’s type system to check stuff for me
● Generic O(1) access to sources

● Works with all Rust’s iterator stuff
● Only per-op code is a lookup table

27

Let’s look at some NAK code….

We can do
metadata, too

28

Challenge 3: Representing values
There are a lot of things we want:
● SSA and registers

– We need registers for final code-gen

● Vectors and 64-bit values
– This one has hidden and very subtle SSA-based RA implications

● Predicates and GPRs
● Uniform and non-uniform values
● Immediates and cbufs

29

SSA Values
● Each SSAValue represents a single 32-bit value

– Has a RegFile (GPR, Pred, UGPR or UPred), and 29-bit index
– Packs into 32 bits so it’s cheap to copy around
– Implements Eq+Hash so it can be a HashMap key

● Each SSARef contains 1-4 SSAValues
– Packs into 128 bits so it’s cheap(ish)
– Implements Deref<[SSAValue]>

● Register allocation automatically collects into consecutive
register ranges as-needed

30

Other value types
● A RegRef represents a register range

– Has a RegFile, an index, and a number of components.

● A CBufRef represents a constant buffer value
– 32 or 64 bits, depending on opcode

● An Imm32 represents a 32-bit immediate
– Or the top 32 bits of a 64-bit source

● Special case immediates: Zero, True, and False
– Often allowed when Imm32 is not

31

Sources and Destinations

32

Challenge 4: Instruction lists
● NIR uses linked lists of instructions

– O(1) insertion, intrusive so no extra allocation, they’re great!
– Rust really doesn’t like linked lists...

● Proper container types are essential to Rust’s safety model
● We use Vec<Box<Instr>>

– Everything is safe. Yay!
– You can’t insert in the middle. Booo…

● The biggest challenge is mutability
– You can’t look at one element while modifying another (at least not easily)

33

Mutability challenges
Vec<T> doesn’t let you have mutable references to multiple
elements simultaneously.

There are a few workarounds:
● slice::split_at_mut() to split the slice
● Use indices like you would pointers and v[i] everywhere

– This gets sketchy fast!

● Re-structure your pass to avoid mutability

34

A safe pattern: Map
● map_instrs() takes a callback mapping an instruction to

zero or more instructions.
● Provided by Shader, Function, and BasicBlock
● Most simple optimization or lowering passes use
map_instrs() to avoid mutability headaches

35

A safe pattern: Map

36

More complicated passes hand-roll...

It’s not ideal but it works

37

The gather/modify pattern
Most passes happen in two separate steps:
● Step 1: Gather information about SSA values
● Step 2: Transform the IR based on the gathered information

● This keeps Rust’s borrow checker happy…
● And it prevents bugs!

– Lots of NIR bugs have crept in because of accidentally looking at the IR you’ve
already modified and assuming it’s the original.

38

Working with SSA values
● HashMap is your friend…

– Gather pass builds a HashMap<SSAValue,Data>
– Modify pass uses the map to update instructions

● Examples:
– Dead code builds a HashSet<SSAValue> of live SSA values
– Copy prop builds a HashMap<SSAValue,Copy> of copies

39

Challenge 5: Control-flow graphs
● Graphs are a PITA with Rust

– You inevitably end up with tables and indices

● Hide all the insanity!
● CFG<T> is a generic container type

– NAK uses CFG<BasicBlock> but you can use any type
– Stores nodes and edges (each nodes has &[usize] preds and succs)
– Contains dominance and loop nesting information
– Re-orders by reverse post-order DFS
– Implements Deref<[T]> so you can iterate it

40

Challenge ∞: Spilling and RA

Yeah… This presentation is already long enough. 😅

41

Final thoughts: Do I like it?
Yes! I’ve loved working on NAK in Rust
● Rust enums (tagged unions) are awesome
● Proc macros are tricky but really useful
● Rust’s traits and generics work well
● I like having a standard library
● Over-all, abstractions are just as powerful but more explicit

in Rust than with C++

42

Final thoughts: Advice for others
● HashMap<K, V> is your friend
● Implement From<T> for everything
● The borrow checker is your friend, not your enemy

– Re-structure your code to be borrow-checker friendly
– Don’t just Rc everything. Interior mutability isn’t as cool as it looks

43

Thank you!

44

We are hiring
col.la/careers

http://col.la/careers

Name
Karla bold 46pt
Info
Karla bold 28pt

46

Slide Title Karla Bold 30 pt
● Karla regular 26pt

– Karla regular 18pt
● Karla regular 18pt

● Karla regular 12pt

There are five styles built into the template. To apply:

• Highlighting the text

• Press TAB to demote to the next level; or

• Press SHIFT + TAB to promote a level

47

Slide Title Karla Bold
30 pt
● Karla regular 26pt

– Karla regular 18pt
● Karla regular 18pt

– Karla regular 12pt

There are five styles built into the template. To apply:

● Highlighting the text

● Press TAB to demote to the next level; or

Press SHIFT + TAB to promote a level

48

Developing
better

technologies

49

Developing
better

technologies

Text Karla regular 12pt

50

Slide Title
Karla Sans Bold 30pt

Company Company Company Company Company Company

2.2 2.3

7.4

3.2
2

4.2

1.8

5.2

1.8

3.1

3.6

1.8
1.6

2.2

4

3
5.5

1.8

2013

2012

2011

Slide content paragraphs
With or without bullets

51

Slide Title
Karla Sans Bold 30pt

2.2

2.3

7.4
3.2

2

4.2

Company

Company

Company

Company

Company

Company

Slide content paragraphs
With or without bullets

52

Date 2010 2011 2012 2013

Content Content Content Content Content

Content Content Content Content Content

Content Content Content Content Content

Content Content Content Content Content

Content Content Content Content Content

Content Content Content Content Content

Content Content Content Content Content

Slide Title
Karla Sans Bold 30pt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Developing better technologies
	Developing better technologies_clipboard0
	Slide 50
	Slide 51
	Slide 52

