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About me
● Faith Ekstrand (@gfxstrand@mastodon.gamedev.place)
● First freedesktop.org commit: wayland/31511d0e, Jan 11, 2013
● Worked at Intel from June 2014 to December 2022

– NIR, Intel (ANV) Vulkan driver, SPIR-V  NIR, ISL, other Intel bits→

● Now at Collabora since January 2022
– Work across the upstream Linux graphics stack, wherever needed
– Currently the lead developer / maintainer of NVK
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Introducing NAK: The Nvidia 
Awesome Kompiler
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NAK: The Nvidia Awesome Kompiler
● Brand new back-end compiler for NVIDIA hardware
● Written in Rust
● Tries to be a model NIR user

– NIR passes are written in C
– Lower in NIR, keep the back-end simple

● Fully SSA until register allocation
– This register allocator actually works! 😂
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Why Rust?



6

Why Rust?
● C is kinda terrible. We all know this…

– Those of us who prefer C know it best

● C++ is also terrible.
● Rust is less terrible?

– Powerful type system that doesn’t rely on virtual dispatch
– Has a large, well thought out standard library
– Borrow checker that catches real bugs
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Wait, you don’t hate the borrow 
checker?!?

Nope! Once you learn to work with it, the borrow checker 
becomes a code review buddy, pointing out serious bugs.

Structuring your code to be borrow-checker-friendly often 
results in better, more obviously correct code.
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Why is NAK a good candidate for Rust?
● NAK is self-contained and doesn’t need to call out

– There are a few utilities we could maybe use
– Mostly, it just consumes NIR and produces a blob of bytes

● The Rust/C interface for NAK is 7 functions
– Not much to bindgen

● We only really need to read NIR
– More on that...
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Can you write a compiler in it?
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But can you write a compiler in it?
● That’s the question I set out to answer with NAK.
● And… Yes, yes you can!
● You do need to make friends with the borrow checker…

– Lots of hash maps
– Lots of SoA where you might do AoS in C/C++
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Challenge 1: Reading NIR from Rust
● Not too bad if the Rust NIR usage is read-only
● NIR lowering passes and optimization loop are written in C
● Rust NIR wrappers take a &nir_shader (not mut!)

– Uses traits to add methods to NIR types
– You can do nb.iter_instrs() on a &nir_block
– Iterator for exec_list (thanks, Karol)
– srcs_as_slice() allows safe srcs[] array access
– NirSrc::as_uint() -> Option<u64> gets a u64 if a source is const
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Challenge 2: Instruction sources
There are a lot of things we want:
● Clear meaning of sources

– inst.src[3] doesn’t really mean anything.
– This gets worse when there are indirects

● Fast, generic access to sources
– Passes like copy propagation don’t care what most sources mean

● Avoid extra array allocations
● Special sources like predicates and indirects
● Source modifiers (because, of course there are…)
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Prior art: NIR
● Sources are in arrays
● Depend on documentation to know what’s what

– We all know just how well that works…

● We avoid extra allocation by using unsized arrays
– Rust can’t do that!

● Everything is an SSA def or const_index
– No modifiers
– No types

● We depend on nir_validate to ensure correctness
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Prior art: ACO
● Each instruction is its own type

– This helps a bit with metadata like rounding modes

● Sources are still arrays
– Each instruction documents source meanings

● Avoid extra allocation using aco::span<T>
– Basically, it’s unsized arrays except way better and you can have more than one
– O(1) source access
– Supports all the usual C++ iterator stuff
– Can have large numbers of sources AND destinations
– Not implementable in Rust…
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How to do this in Rust...
If I could have everything I want….
● Want to use Rust enums…

– Rust enums are tagged unions
– Safer than NIR’s enum and pointer cast

● Want descriptive names for sources
● Want typesafe metadata
● Want Rust’s type system to check stuff for me
● Want generic O(1) access to sources
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You can't always get what 
you want
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But if you try sometimes, 
well, you just might find
You get what you need...
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Let’s look at some NAK code….
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Let’s look at some NAK code….

Named
Destination
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Let’s look at some NAK code….

Named
Sources
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Let’s look at some NAK code….

Type
Decorations
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Let’s look at some NAK code….

Magic
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Let’s look at some NAK code….

Magic
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Let’s look at some NAK code….

Even more
magic!
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Let’s look at some NAK code….
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This gets us most of what we want
● Good use of Rust enums
● Descriptive names for sources
● Typesafe metadata
● Rust’s type system to check stuff for me
● Generic O(1) access to sources

● Works with all Rust’s iterator stuff
● Only per-op code is a lookup table
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Let’s look at some NAK code….

We can do
metadata, too
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Challenge 3: Representing values
There are a lot of things we want:
● SSA and registers

– We need registers for final code-gen

● Vectors and 64-bit values
– This one has hidden and very subtle SSA-based RA implications

● Predicates and GPRs
● Uniform and non-uniform values
● Immediates and cbufs



29

SSA Values
● Each SSAValue represents a single 32-bit value

– Has a RegFile (GPR, Pred, UGPR or UPred), and 29-bit index
– Packs into 32 bits so it’s cheap to copy around
– Implements Eq+Hash so it can be a HashMap key

● Each SSARef contains 1-4 SSAValues
– Packs into 128 bits so it’s cheap(ish)
– Implements Deref<[SSAValue]>

● Register allocation automatically collects into consecutive 
register ranges as-needed
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Other value types
● A RegRef represents a register range

– Has a RegFile, an index, and a number of components.

● A CBufRef represents a constant buffer value
– 32 or 64 bits, depending on opcode

● An Imm32 represents a 32-bit immediate
– Or the top 32 bits of a 64-bit source

● Special case immediates: Zero, True, and False
– Often allowed when Imm32 is not
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Sources and Destinations



32

Challenge 4: Instruction lists
● NIR uses linked lists of instructions

– O(1) insertion, intrusive so no extra allocation, they’re great!
– Rust really doesn’t like linked lists...

● Proper container types are essential to Rust’s safety model
● We use Vec<Box<Instr>>

– Everything is safe. Yay!
– You can’t insert in the middle. Booo…

● The biggest challenge is mutability
– You can’t look at one element while modifying another (at least not easily)
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Mutability challenges
Vec<T> doesn’t let you have mutable references to multiple 
elements simultaneously.

There are a few workarounds:
● slice::split_at_mut() to split the slice
● Use indices like you would pointers and v[i] everywhere

– This gets sketchy fast!

● Re-structure your pass to avoid mutability
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A safe pattern: Map
● map_instrs() takes a callback mapping an instruction to 

zero or more instructions.
● Provided by Shader, Function, and BasicBlock
● Most simple optimization or lowering passes use 
map_instrs() to avoid mutability headaches
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A safe pattern: Map
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More complicated passes hand-roll...

It’s not ideal but it works 
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The gather/modify pattern
Most passes happen in two separate steps:
● Step 1: Gather information about SSA values
● Step 2: Transform the IR based on the gathered information

● This keeps Rust’s borrow checker happy…
● And it prevents bugs!

– Lots of NIR bugs have crept in because of accidentally looking at the IR you’ve 
already modified and assuming it’s the original.
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Working with SSA values
● HashMap is your friend…

– Gather pass builds a HashMap<SSAValue,Data>
– Modify pass uses the map to update instructions

● Examples:
– Dead code builds a HashSet<SSAValue> of live SSA values
– Copy prop builds a HashMap<SSAValue,Copy> of copies
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Challenge 5: Control-flow graphs
● Graphs are a PITA with Rust

– You inevitably end up with tables and indices

● Hide all the insanity!
● CFG<T> is a generic container type

– NAK uses CFG<BasicBlock> but you can use any type
– Stores nodes and edges (each nodes has &[usize] preds and succs)
– Contains dominance and loop nesting information
– Re-orders by reverse post-order DFS
– Implements Deref<[T]> so you can iterate it
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Challenge ∞: Spilling and RA 

Yeah… This presentation is already long enough. 😅
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Final thoughts: Do I like it?
Yes! I’ve loved working on NAK in Rust
● Rust enums (tagged unions) are awesome
● Proc macros are tricky but really useful
● Rust’s traits and generics work well
● I like having a standard library
● Over-all, abstractions are just as powerful but more explicit 

in Rust than with C++
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Final thoughts: Advice for others
● HashMap<K, V> is your friend
● Implement From<T> for everything
● The borrow checker is your friend, not your enemy

– Re-structure your code to be borrow-checker friendly
– Don’t just Rc everything. Interior mutability isn’t as cool as it looks
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Thank you!
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We are hiring
col.la/careers

http://col.la/careers


Name
Karla bold 46pt
Info
Karla bold 28pt



46

Slide Title Karla Bold 30 pt
● Karla regular 26pt

– Karla regular 18pt
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● Karla regular 12pt

There are five styles built into the template. To apply:

• Highlighting the text 

• Press  TAB to demote to the next level; or 

• Press SHIFT + TAB to promote a level
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Slide Title Karla Bold
30 pt
● Karla regular 26pt

– Karla regular 18pt
● Karla regular 18pt

– Karla regular 12pt

There are five styles built into the template. To apply:

● Highlighting the text 

● Press  TAB to demote to the next level; or 

Press SHIFT + TAB to promote a level



48

Developing 
better 

technologies
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Developing 
better 

technologies

Text Karla  regular 12pt
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