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Hi

▶ Linux, Vulkan, Rust etc. tinkerer
▶ Zink/Mesa contributor since Jan 2023
▶ Some of things I've done on Zink:

- fixed a bunch of things
- added emulation for GL_POINT, edge flags, pv mode and

other features
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The problem

▶ OpenGL has features controlled by state
▶ Zink may do emulation in shaders

- some of them don't exist in vulkan, you would use
shaders instead

- each state might require a shader variant
- state only known at draw time

▶ =⇒ compilation stutters
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Precompilation

Compile variants ahead of time?

▶ Explosive number of combinations
▶ that ∗ user shaders
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Current state

▶ Zink precompiles base variants
- works great when no emulation is needed
- does nothing otherwsie
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Uber shaders

Uber shader ▶ Big shader that can do all
emulation

▶ Dynamically controlled
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▶ Advantages:
- no need for variants =⇒ can be precompiled

▶ Disadvantages:
- potentially slower (bad branching and register pressure)
- takes longer to process and compile
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So ...

▶ Kick uber shader compilation ASAP
- done asynchronously with util_queue

▶ When drawing
- use variant when ready
- bind uber shader if no variant is ready
- kick variant compilation

▶ Best of both worlds
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Presentation Outline

What does it look like in practice

Implementing in Zink

Introducing uber shaders

Current state of the patch

Some numbers
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NIR passes

▶ We don't have the luxury of just creating shaders
▶ The user (gallium frontend) provides them
▶ Emulation done with NIR passes most of the time
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Sysvals

▶ Sysvals are great
▶ NIR passes might use sysvals for parameters

- lower to push constant loads for uber
- lower to inlined constants for variants
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Changes to passes

▶ Making sure sysvals are used for all parameters
▶ All passes need a way to be dynamically disabled
▶ Sometimes no changes are necessary

(nir_lower_alpha_test)
▶ Sometimes not enough

- nir_lower_flatshade changes variable attributes
- can't be changed dynamically
- every var needs to be duplicated and bcsel-ed from

fragment
- interface needs to match between multiple shader

combinations
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Hilbert's shader slots

▶ Each variable slot becomes slot ∗ 2
▶ Each duplicated variable goes in slot ∗ 2 + 1

but..
▶ We don't have infinite rooms ...



Open First

Alternative solutions

▶ Vulkan extension to expose all attributes and
barycentric?

- VK_KHR_fragment_shader_barycentric exists
- stable vertex order?
- not widely available
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nir_passthrough_gs

▶ Geometry shader used to emulate some features
▶ Interface needs to match with vs or tes
▶ Not the only emulation GS
▶ Created on demand
▶ Causes precompiled GPLs to be discarded and

disabled
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Shaders in Zink

▶ Shader caching in Zink is very simple, here is a
diagram:
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Shaders in Zink
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Shaders in zink

▶ Shader state gets created and bound
▶ At draw time:

- a pipeline is searched for state hash
- if found it might get replaced with an optimized linked

pipeline

- if not found a pipeline is created from current program +
some state
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Shader in zink

▶ Programs are fetched from a cache
- (the key is a hash of user shaders and some state)

▶ To handle variants the shader modules are updated
▶ Shader modules cached by shader keys
▶ Pipeline libraries for variants are stored in a cache

(owned by program)
▶ Caches might be filled asynchronously
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Asynchronous precompilation

▶ During shader state or program creation
compilation is kicked

▶ Entry added to cache
▶ Entry contains a fence

- on cache hit wait on fence
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Cached cache

▶ Some games use a separate context to compile
programs asynchronously

- DOOM 2016 does this
▶ To support this zink will share the pipeline lib

caches across contexts
- this is effectively a cache for the cache
- same key as program caches
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Variants handling

▶ When separate shaders are used zink replaces the
program

- whatever was precompiled gets lost

▶ we need to keep the uber shader around
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Variants handling

▶ We now have a program per variant
- a program only holds one GPL
- a cross context cache is used for uber shaders GPLs

▶ Programs now hold a cache of variants
▶ Fast path for base variant
▶ When we need a variant:

- if cache hit check fence
- if the fence is signaled use variant
- if fence not signaled or cache miss use uber
- on cache miss we also start the kick compilation
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Compiling variants

▶ Compiling a variant requires some steps
- program created from separate shaders must have been

replaced
- run compilation pipeline to get the shader modules
- create gpl

▶ For each stage the corresponding caches and fences
are checked

▶ If any not ready use uber and kick job for the next
stage

▶ If all stages are done use variant prog
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Supported legacy features

▶ PIPE_CAP_GL_CLAMP
▶ PIPE_CAP_CLIP_PLANES
▶ PIPE_CAP_FRAGMENT_COLOR_CLAMPED
▶ PIPE_CAP_ALPHA_TEST
▶ PIPE_CAP_FLATSHADE (wip)
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Current state of the patch

▶ Two branches
- dirty branch about 80 commits
- clean branch about 60 commits

▶ Plan is to land what has been cleaned first
▶ Some features have not been tackled at all yet
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Requirements

▶ All requirements for Zink's optimal path
- GPL, dynamic state and others

▶ 256 bytes of push contants
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A pathological example

▶ OpenMW trace
▶ Uses ucp and GL_CLAMP
▶ At one point it sends a whole bunch of shaders

- this will always stutter on any driver
- variants need to be compiled for each shader
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The numbers

▶ Without patches:
- cold cache: 893ms
- hot cache: 262ms

▶ With patches:
- hot cache: 276ms

▶ ???
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What is going on?

A check is performed that might disable the uber shaders path

bool can_use_uber = zink_can_use_uber(&ctx->gfx_pipeline_state);

▶ single feature not supported by the uber shader
=⇒ stutter

▶ added overhead (TODO improve)
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More numbers

let's hack it to always use the uber shader path

bool can_use_uber = true || zink_can_use_uber(&ctx->gfx_pipeline_state);

▶ Rendering breaks a bit
▶ Without patches:

- no disk cache 388ms
- with disk 262ms

▶ With patches:
- no disk cache 317ms
- with disk 221ms

▶ Improvement!
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More recent numbers

Those are numbers after rebasing on more recent zink
▶ Without patches:

- no disk cache 504ms
- with disk cache 383ms

▶ With patches:
- no disk cache 453ms
- with disk cache 360ms

▶ With patches and hack:
- no disk cache 382ms
- with disk cache 310ms

▶ improvement!
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Currently working on...

▶ Only start compiling uber shaders once they are
needed once

- otherwise pre compile base variants
- cuts down precompile time for well behaved applications
- requires annoying logic
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Visualizing uber shaders

▶ Just output red from uber fragment shaders
- objects often covered or offscreen

▶ Use discard in a checkerboard pattern for non uber
- uber still writes all pixels so always visible
- those pixels would never get cleared so alternate pattern
- previous frames will remain in the non drawn pixels
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Visualizing uber shaders
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Visualizing uber shaders

Demo!
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Visualizing uber shaders
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Visualizing uber shaders
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Visualizing uber shaders
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Visualizing uber shaders



Open First

Thanks

▶ Collabora
- for allowing me to work on this

▶ Erik Faye-Lund @kusma
- orignal author of Zink
- helped me getting started with Zink
- helped discussing spec details

▶ Mike Blumenkrantz @zmike
- originally proposed I'd work on this
- tons of suggetions

▶ other people that have or will help review
- @zmike
- @alyssa
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