
https://www.pengutronix.de

Wayland Shells
for Embedded Systems

Michael Tretter – m.tretter@pengutronix.de
XDC 2023

 2

About Me

 Michael Tretter
 Embedded Linux developer
 Pengutronix
 Graphics team

 3

Embedded Systems

 Digital signage
 (Automotive) infotainment systems
 Industrial control panels
 Game consoles
 VR systems

 4

Embedded vs. Desktop

 Resource constraints
 Custom input devices
 User interface defined by system developer

 5

Common UI Layouts

 Single fullscreen application
 One application per output
 Split screen with two applications
 Picture in picture
 Fixed window layout
 Device-specific behavior

 6

Window Management in Wayland

 Wayland compositor is the window manager
 System developer needs control over window management

 7

Weston – Kiosk Shell

 Single fullscreen application per output
 Wayland clients use XDG shell protocol
 Identify clients by app ID

 8

App IDs

 Defined in the XDG shell protocol
 The app ID identifies the general class of applications to

which the surface belongs
 The compositor can use this to group multiple surfaces

together, or to determine how to launch a new application

 9

Weston – IVI-Shell

 In-Vehicle-Infotainment Embedded→

 Plugin to add custom behavior to Weston
 API for controlling the shell: ivi_layout_interface
 Wayland Client protocol: In-vehicle infotainment application
 Surprisingly large code base

 10

AGL compositor

 Automotive Grade Linux Embedded→

 XDG shell protocol for applications
 AGL shell protocol for allowing clients certain control
 Client identification via app IDs
 Assumes a panel and background
 Built on libweston

 11

Cage

 Single fullscreen application
 Application spans bounding box of all outputs
 No client identification necessary
 Built on wlroots

 12

gamescope

 Single fullscreen X11 application
 Optimized for zero-copy (libliftoff)
 Color management
 No client identification necessary
 Built on wlroots
 Out of scope for the topic of this talk

 13

phoc/phosh

 Wayland shell for phones
 Compositor and shell may run in processes
 Built on wlroots

 14

qtcompositor

 Scripting and window placement with QML
 Wayland protocol callbacks are exposed to QML

 15

Weston - Scriptable Window Management

 https://gitlab.freedesktop.org/wayland/weston/-/issues/520
 Weston desktop-shell plugin for Lua script
 Hooks call into script with top level surface

 16

Custom Window Management?

 Are hooks for surfaces enough?
 Should there be some kind of API?
 Separate custom code from core compositor?

 17

Client Identification?

 Are App IDs sufficient?
 What about multiple instances of the same program?
 GStreamer pipelines?

 18

Wayland Client Protocol for Embedded?

 What do you miss in the XDG shell?
 Do graphic toolkits have to support the protocol?

 19

Further Concerns

 Performance optimization and hardware planes
 Color management
 Screen recording and streaming
 Remote desktop protocol, VNC
 IPC, D-Bus, gRPC

https://www.pengutronix.de

Thank You!

Michael Tretter – m.tretter@pengutronix.de

 21

Questions

 Custom Window Management?
 Client Identification?
 Wayland Client Protocol for Embedded?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

