
https://www.pengutronix.de

Wayland Shells
for Embedded Systems

Michael Tretter – m.tretter@pengutronix.de
XDC 2023

 2

About Me

 Michael Tretter
 Embedded Linux developer
 Pengutronix
 Graphics team

 3

Embedded Systems

 Digital signage
 (Automotive) infotainment systems
 Industrial control panels
 Game consoles
 VR systems

 4

Embedded vs. Desktop

 Resource constraints
 Custom input devices
 User interface defined by system developer

 5

Common UI Layouts

 Single fullscreen application
 One application per output
 Split screen with two applications
 Picture in picture
 Fixed window layout
 Device-specific behavior

 6

Window Management in Wayland

 Wayland compositor is the window manager
 System developer needs control over window management

 7

Weston – Kiosk Shell

 Single fullscreen application per output
 Wayland clients use XDG shell protocol
 Identify clients by app ID

 8

App IDs

 Defined in the XDG shell protocol
 The app ID identifies the general class of applications to

which the surface belongs
 The compositor can use this to group multiple surfaces

together, or to determine how to launch a new application

 9

Weston – IVI-Shell

 In-Vehicle-Infotainment Embedded→

 Plugin to add custom behavior to Weston
 API for controlling the shell: ivi_layout_interface
 Wayland Client protocol: In-vehicle infotainment application
 Surprisingly large code base

 10

AGL compositor

 Automotive Grade Linux Embedded→

 XDG shell protocol for applications
 AGL shell protocol for allowing clients certain control
 Client identification via app IDs
 Assumes a panel and background
 Built on libweston

 11

Cage

 Single fullscreen application
 Application spans bounding box of all outputs
 No client identification necessary
 Built on wlroots

 12

gamescope

 Single fullscreen X11 application
 Optimized for zero-copy (libliftoff)
 Color management
 No client identification necessary
 Built on wlroots
 Out of scope for the topic of this talk

 13

phoc/phosh

 Wayland shell for phones
 Compositor and shell may run in processes
 Built on wlroots

 14

qtcompositor

 Scripting and window placement with QML
 Wayland protocol callbacks are exposed to QML

 15

Weston - Scriptable Window Management

 https://gitlab.freedesktop.org/wayland/weston/-/issues/520
 Weston desktop-shell plugin for Lua script
 Hooks call into script with top level surface

 16

Custom Window Management?

 Are hooks for surfaces enough?
 Should there be some kind of API?
 Separate custom code from core compositor?

 17

Client Identification?

 Are App IDs sufficient?
 What about multiple instances of the same program?
 GStreamer pipelines?

 18

Wayland Client Protocol for Embedded?

 What do you miss in the XDG shell?
 Do graphic toolkits have to support the protocol?

 19

Further Concerns

 Performance optimization and hardware planes
 Color management
 Screen recording and streaming
 Remote desktop protocol, VNC
 IPC, D-Bus, gRPC

https://www.pengutronix.de

Thank You!

Michael Tretter – m.tretter@pengutronix.de

 21

Questions

 Custom Window Management?
 Client Identification?
 Wayland Client Protocol for Embedded?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

