
Freedreno on Android
Lucas Fryzek

Oct 19th, 2023

XDC 2023, A Coruña

1

Introduction

• State of drivers with Adreno GPUs

• Why would you want to do this?

• How to build and run Mesa on Android

• Driver changes necessary to run on Android

• Areas of needed improvement for Android support

• Shortcomings of my work

2

What does it look like

3

During development:

4

After:

5

A tale of two drivers

• MSM

◦ Your friendly neighborhood DRM-compliant

upstream kernel-mode driver.

• KGSL

◦ Qualcomm's kernel mode driver supported by their

proprietary userspace driver

6

Why KGSL?

• Not every SOC is upstreamed

• Would like to use an open source driver without

requiring lots of merging upstream & downstream

code

• Provides the ability to run Qualcomm's proprietary

userspace driver and Mesa on the same device with

the same KMD

◦ Run different driver in a chroot from host OS
7

• Turnip already runs on top of KGSL

◦ Basis for all my work on Freedreno & EGL

• Freedreno developers have already started

abstracting KMD interface in src/freedreno/drm

8

Getting Started

• Work done Pixel 4a

◦ Adreno 618 GPU - Already supported by Freedreno

• NDK version 25 and version 13

◦ Will talk about why two versions later

• Debug rom from

◦ Perk of using google supported devices

https://flash.android.com

9

https://flash.android.com/
https://flash.android.com/

• Make sure you use a "userdebug" rom

• If device is not supported by flashing tool you'll need

to build a ROM from scratch with system partition

unlocked

10

How to build Mesa on
Android?

• If we are targeting Android NDK (I'll get back to this

later):

◦ You can make use of Meson cross files to build

Mesa

◦ Example of how to do that here

▪ https://docs.mesa3d.org/android.html

11

https://docs.mesa3d.org/android.html
https://docs.mesa3d.org/android.html

Important meson flags for freedreno

• -Dplatforms=android

• -Dplatform-sdk-version=25

• -Dandroid-stub=true

• -Dgallium-drivers=freedreno

• -Dfreedreno_kmds=kgsl

12

How do you even deploy system libraries on an OS such

as Android?

• Existing Mesa documentation for Turnip talks about

replacing libraries in /vendor/lib64/ , likely need

to do the same thing for OpenGL

• Also need to unlock system partition

adb disable-verity

adb reboot

adb remount -R

13

• Thankfully Android is open source, we can read

 source code

• Replace following libraries in /vendor/lib64/egl

◦ libEGL_adreno.so

◦ libGLESv1_CM_adreno.so

◦ libGLESv2.so

Android's EGL loader

14

https://android.googlesource.com/platform/frameworks/native/+/master/opengl/libs/EGL/Loader.cpp
https://android.googlesource.com/platform/frameworks/native/+/master/opengl/libs/EGL/Loader.cpp

• Trying to run GL apps now, we run into another

problem

◦ Apps don't use new driver

• If we restart the device it will start using the new

driver

◦ Not the best dev environment

• Reading there is config

property to preload GL driver

ro.zygote.disable_gl_preload

◦ Need to override the default and set it to true

Android documentation

15

https://source.android.com/docs/core/graphics/renderer
https://source.android.com/docs/core/graphics/renderer

• Environment variables need to be set to force the

mesa loader to work properly on Android

◦ Android has a "prop" system that mesa already

abstracts for environment variable access

◦ adb setprop

"mesa.loader.driver.override" "kgsl"

16

Testing

• You can run regular Android APKs to test the driver

◦ CTS can be built as an APK

◦ Not the most convenient development environment

17

You can actually run command line apps on Android!

• has a

build environment for this

◦ Build OpenGL apps using offscreen EGL Pbuffers

◦ Can run the apps from adb shell

Freedreno reverse engineering tools repo

18

https://gitlab.freedesktop.org/freedreno/freedreno
https://gitlab.freedesktop.org/freedreno/freedreno

• Repo has build scripts setup already

• It expects NDK version 13

• NDK version 13 has some other goodies that are

useful for debugging applications

19

• NDK 13 was the last shipped version with gdbserver

• Can copy binary from NDK to device

• Makes debugging a lot easier

◦ Can preform debugging on adb shell launched

apps

◦ Can just use Android studio debugger to debug

NDK code in APKs

20

We can take it further!

• With a few tweaks CTS Android platform can be built

as a standalone program just like on Linux

• deqp-runner can even be built through cargo-ndk

21

https://github.com/bbqsrc/cargo-ndk
https://github.com/bbqsrc/cargo-ndk

Source code changes

• Only about ~900 lines of code to add support

• Majority of changes in new kgsl backend in

src/freedreno/drm

• There are also significant changes in egl/drivers

/dri2/platform_android.c

22

kgsl backend

• Handles BO allocation and mapping

• Querying properties from kernel mode driver

• Submitting command queues to hardware

• Handling synchronization

23

• Backend code mostly came from Turnip

• Lots of copy pasting

• Could have more common code added to

src/freedreno for both drivers

24

Interesting quirks

• No referencing count on buffers

◦ Need to ensure buffers are done being used by GPU

before freeing

• KGSL ignores offset argument in

kgsl_command_object

◦ Need to ensure that the GPU address contains the

offset
25

Some backend changes necessary to accommodate

KGSL quirks:

• Framebuffers allocated by Android need to mapped in

a different way

◦ Added per backend implementation of mapping

function

◦ Added per backend implementation of importing

dmabufs
26

platform_android.c changes were not as nice....

27

Dealing with gralloc

• Graphics allocator on Android

• Framebuffers for APK apps are allocated by gralloc

and passed to us

• Gralloc implementation is driver specific

• Turnip already has code to interface with Qualcomm's

version of gralloc

28

Turnip's code...

uint32_t gmsm = ('g' << 24) | ('m' << 16) | ('s' << 8) | 'm';

if (handle_data[0] != gmsm) {

 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,

"private_handle_t::magic is %x, expected %x",

 handle_data[0], gmsm);

}

ubwc = handle_data[1] & 0x08000000;

*dma_buf = handle_fds[0];

29

• No external API to access internal data

• Data is interpreted based on

• But it works!

gralloc implementation source code

30

https://android.googlesource.com/platform/hardware/qcom/display/
https://android.googlesource.com/platform/hardware/qcom/display/

• Implemented same interface in egl/drivers

/dri2/platform_android.c

• Existing implementation that work with upstream

DRM drivers

31

• Other Mesa android devs have been working on a

newer "Gralloc 4" interface in

platform_android_mapper.cpp

◦ Uses newer standard API to interface with allocator

◦ Cannot be used with Android NDK

▪ c++ namespace between NDK and android tree

build are different

◦ Building Mesa in tree with Android is

▪ This is the alternative way to currently build Mesa

without the NDK

likely to be deprecated

32

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/21570#note_1822193
https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/21570#note_1822193

Bugs encountered

• Main issue is with surface allocated by gralloc for the

framebuffer

◦ Does not necessarily allocate surfacing matching

hardware limitations

◦ For example, the blitting engine on A6xx GPUs

performs copies on 16x4 pixel chunks

◦ Causing IOMMU faults when the GPU accesses

memory beyond the framebuffer

33

• Biggest issue in preventing KGSL changes from being

merged

• Problem triggered by Android UI elements

◦ Android UI will flicker whenever GPU iommu fault is

triggered

◦ Normal APKs seem to always allocate framebuffer

equal to display size

• Qualcomm blob driver is getting the same surfaces

but somehow avoids this issue

• This is where things got kind of stuck...
34

Notes on Freedreno RE tools

35

• Freedreno has a diverse set of tools for inspecting

what the Qualcomm driver and Freedreno driver are

doing

• Most of these tools are designed to work apps

launched from command line

◦ Doesn't help a lot of problem only happens with

Android APKs

36

One key tool is libwrap

• Library that allows you to trace command streams on

Qualcomm hardware

◦ Works with both Freedreno and Qualcomm

propeitary driver

• Uses LD_PRELOAD to load library and override

system functions

37

How do you run this with APKs?

• Made some changes to libwrap

• How can you LD_PRELOAD on Android?

◦ use prop wrap.<app-name> to override

environment variables in APK processes

• Fix issues associated with tracing Android APKs

◦ APKs had multiple threads accessing the kgsl FD

38

Conclusions

39

• A lot of code in mesa already exists to make running

on android easy

• Proper DRM drivers will likely just work

• If you want to use a downstream kernel mode driver

(and gralloc implementation) some more work is

necessary

40

• Development is faster when you do more of your

work from adb shell

◦ Setting up a good development environment pays

dividends

41

• One of the biggest problem area in Mesa's android

support is window system integration

◦ Gralloc appears to be the standard for this in

Android

◦ Not clear how newer versions of the API can be

used in Mesa

◦ Not easy to get information/documentation on

Gralloc without digging through source code

◦ platform_android.cpp currently needs to be

hacked to work with non-drm drivers
42

Questions?

We're hiring!

igalia.com/jobs/

43

https://www.igalia.com/jobs/
https://www.igalia.com/jobs/

44

