
Improving the World’s Slowest Raytracer

Friedrich Vock

October 17, 2023

Contents
• Raytracing: A Quick Recap

• Acceleration Structures
• Raytracing Pipelines

• Implementing Acceleration Structures
• LBVH
• PLOC

• Implementing Raytracing Pipelines

• Status And What’s To Come
• Where We Are
• Where We’re Going

Raytracing: A Quick Recap

Raytracing: A Quick Recap ▶ Acceleration Structures

Acceleration Structures
• Opaque from the app’s POV
• Contains scene geometry in format understood by ray accelerator HW
• Built by the driver, app provides “primitive soup”
• Three primitive types: Triangles, AABBs and instances of other BVHs

◦ With AABB primitives, a shader can execute custom code to determine if a ray hits
the surface

◦ Vulkan defines two levels of acceleration structures: Top-Level and Bottom-Level
▷ TLAS can only have BLAS instances as primitives
▷ BLAS can only have triangles or AABBs as primitives

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

• Callable shaders can be called from RGen/CHit/Miss(/Callable)

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Raytracing Pipelines
• Special type of pipeline for performing raytracing
• New shader stages: Ray Generation, Any Hit, Intersection, Closest Hit, Miss,

Callable

• Callable shaders can be called from RGen/CHit/Miss(/Callable)

Raytracing: A Quick Recap ▶ Raytracing Pipelines

Other RT Pipeline concepts
• Shader Binding Tables (SBTs)

◦ More than one shader for each stage!
◦ App tells the driver which shader to call with a Shader Binding Table
◦ Jump Table on the GPU

• Pipeline Libraries
◦ Incomplete pipelines that can be linked with other pipelines
◦ Useful for e.g. moving commonly-used shaders into common library

▷ Pipelines using these shaders only need to link to the previously-created library

Implementing Acceleration Structures

Implementing Acceleration Structures

Acceleration Structure Building
• RADV implements acceleration structures as BVHs

◦ Tree of AABBs and triangles
◦ Internal nodes are AABBs, each leaf node represents a primitive
◦ A node’s AABB is the AABB of its child nodes

• Hardware format is BVH4
◦ Each internal node can have up to 4 child nodes

Node ID packing:
• Node offset in BVH / 8
• 3 LSBs used for node type

struct radv_bvh_box32_node {
uint32_t children[4];
radv_aabb coords[4];
uint32_t reserved[4];

};

struct radv_bvh_triangle_node {
float coords[3][3];
uint32_t reserved[3];
uint32_t triangle_id;
/* flags in upper 4 bits */
uint32_t geometry_id_and_flags;
uint32_t reserved2;
uint32_t id;

};

Implementing Acceleration Structures

Acceleration Structure Building
• Building acceleration structures is a multi-step process

1. Convert input primitives to leaf nodes
2. Sort nodes
3. Construct binary BVH
4. Convert binary BVH to BVH4

• Need barriers in between each step!
◦ Bad for building many tiny acceleration structures
◦ Vulkan allows for building multiple acceleration structures at a time

Implementing Acceleration Structures

Acceleration Structure Building
• Building acceleration structures is a multi-step process

1. Convert input primitives to leaf nodes
2. Sort nodes
3. Construct binary BVH
4. Convert binary BVH to BVH4

• Need barriers in between each step!
◦ Bad for building many tiny acceleration structures
◦ Vulkan allows for building multiple acceleration structures at a time

• This is what happens when you don’t batch:

Implementing Acceleration Structures

Acceleration Structure Building
• Building acceleration structures is a multi-step process

1. Convert input primitives to leaf nodes
2. Sort nodes
3. Construct binary BVH
4. Convert binary BVH to BVH4

• Need barriers in between each step!
◦ Bad for building many tiny acceleration structures
◦ Vulkan allows for building multiple acceleration structures at a time

• This is what happens when you don’t batch:

BVH Building Algorithms

Implementing Acceleration Structures ▶ LBVH

Linear BVH
• Algorithm from 2014
• Builds a radix tree from generated morton codes
• Tree can be built up independently for each node

◦ Great for parallelization!
• Used for quick builds

Implementing Acceleration Structures ▶ PLOC

Parallel Locally-Ordered Clustering
• Algorithm from 2017
• Better quality than LBVH, though slower
• Original reference implementation was written in CUDA
• Heavily relies on device-wide synchronization

◦ No global synchronization primitives available
◦ Have to make our own!

Implementing Acceleration Structures ▶ PLOC

The Poor Man’s Global Synchronization
• All build shaders are written in Vulkan GLSL
• Compiler and target hardware is known
• Can assume more guarantees in certain aspects

◦ Forward Progress
◦ Launch ordering

• Work Stealing Queue
◦ Each task receives a unique ID
◦ Runtime-defined number of tasks to launch before synchronizing

Launching new tasks:

taskID = atomicAdd(taskStartedCounter, 1);

Implementing Acceleration Structures ▶ PLOC

The Poor Man’s Global Synchronization
• All build shaders are written in Vulkan GLSL
• Compiler and target hardware is known
• Can assume more guarantees in certain aspects

◦ Forward Progress
◦ Launch ordering

• Work Stealing Queue
◦ Each task receives a unique ID
◦ Runtime-defined number of tasks to launch before synchronizing

Launching new tasks:
taskID = atomicAdd(taskStartedCounter, 1);

Implementing Acceleration Structures ▶ PLOC

The Poor Man’s Global Synchronization
Making sure previous work has finished:
• Maintain a “tasks finished” counter and increment it when finished
• If the new work ID is larger than the maximum task ID to launch before

synchronizing, busy-wait until the maximum task ID is updated
• The last task to finish updates the maximum task ID

finishID = atomicAdd(taskFinishCounter, 1);
if (finishID == maxTaskID) {
atomicAdd(maxTaskID, nextNumberOfTasks);

} else {
while (taskID > maxTaskID) {}

}

Implementing Acceleration Structures ▶ PLOC

Totally sane BVH building code
controlBarrier(gl_ScopeWorkgroup, gl_ScopeDevice, gl_StorageSemanticsBuffer,

gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible);
if (gl_LocalInvocationIndex == 0) {

if (did_work)
atomicAdd(DEREF(header).sync_data.task_done_counter, 1);

global_task_index = atomicAdd(DEREF(header).sync_data.task_started_counter, 1);

do {
/* Perform a memory barrier to refresh the current phase’s end counter, in case
* another workgroup changed it. */
memoryBarrier(gl_ScopeDevice, gl_StorageSemanticsBuffer,

gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible);

/* The first invocation of the first workgroup in a new phase is responsible to initiate the
* switch to a new phase. It is only possible to switch to a new phase if all tasks of the
* previous phase have been completed. Switching to a new phase and incrementing the phase
* end counter in turn notifies all invocations for that phase that it is safe to execute.
*/
if (global_task_index == DEREF(header).sync_data.current_phase_end_counter &&

DEREF(header).sync_data.task_done_counter == DEREF(header).sync_data.current_phase_end_counter) {
if (DEREF(header).sync_data.next_phase_exit_flag != 0) {

DEREF(header).sync_data.phase_index = TASK_INDEX_INVALID;
memoryBarrier(gl_ScopeDevice, gl_StorageSemanticsBuffer,

gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible);
} else {

atomicAdd(DEREF(header).sync_data.phase_index, 1);
DEREF(header).sync_data.current_phase_start_counter = DEREF(header).sync_data.current_phase_end_counter;
/* Ensure the changes to the phase index and start/end counter are visible for other
* workgroup waiting in the loop. */
memoryBarrier(gl_ScopeDevice, gl_StorageSemanticsBuffer,

gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible);
atomicAdd(DEREF(header).sync_data.current_phase_end_counter,

DIV_ROUND_UP(task_count(header), gl_WorkGroupSize.x));
}
break;

}

/* If other invocations have finished all nodes, break out; there is no work to do */
if (DEREF(header).sync_data.phase_index == TASK_INDEX_INVALID) {

break;
}

} while (global_task_index >= DEREF(header).sync_data.current_phase_end_counter);

shared_phase_index = DEREF(header).sync_data.phase_index;
}

barrier();
if (DEREF(header).sync_data.phase_index == TASK_INDEX_INVALID)

return TASK_INDEX_INVALID;

num_tasks_to_skip = shared_phase_index - phase_index;

uint32_t local_task_index = global_task_index - DEREF(header).sync_data.current_phase_start_counter;
return local_task_index * gl_WorkGroupSize.x + gl_LocalInvocationID.x;

Implementing Raytracing Pipelines

Implementing Raytracing Pipelines

Hardware Acceleration Features on AMD
• Instruction for hardware-accelerated ray-BVH intersection:

image_bvh_intersect_ray
◦ Calculates intersection results for a single BVH node
◦ Returns child nodes sorted by intersection distance for internal AABB nodes
◦ Returns intersection results (incl. barycentrics for triangles) for leaf nodes
◦ New in RDNA3: Ray flag handling and more box sorting modes

• New in RDNA3: Instruction for LDS traversal stack: ds_bvh_stack_rtn
◦ Optimization for stack handling
◦ Not used in RADV (yet)

Implementing Raytracing Pipelines

Hardware Acceleration Features on AMD
• Instruction for hardware-accelerated ray-BVH intersection:

image_bvh_intersect_ray
◦ Calculates intersection results for a single BVH node
◦ Returns child nodes sorted by intersection distance for internal AABB nodes
◦ Returns intersection results (incl. barycentrics for triangles) for leaf nodes
◦ New in RDNA3: Ray flag handling and more box sorting modes

• New in RDNA3: Instruction for LDS traversal stack: ds_bvh_stack_rtn
◦ Optimization for stack handling
◦ Not used in RADV (yet)

• All the rest: Implemented in software

Implementing Raytracing Pipelines

Layout of a Raytracing pipeline - XDC 2022
• Inline all raytracing shaders into a single compute shader
• Shaders are referred to by IDs
• Wrapped in a loop that continues executing shaders unless exit is requested

void main() {
uint32_t shader_id = raygen_sbt[0];
while (shader_id != 0) {
switch (shader_id) {
// paste all shader code in here

}
}

}

Implementing Raytracing Pipelines

Layout of a Raytracing pipeline - XDC 2022
Problem: Raytracing pipelines can get big (2000+ shaders)
• Size of shaders caused stack overflows during passes that operated recursively

on blocks
• Does not work well with pipeline libraries - have to copy shader code around and

defer actual compilation

Implementing Raytracing Pipelines

Layout of a Raytracing pipeline - XDC 2023
“Monolithic” mode:
• All shaders are fully inlined
• No shader call overhead, potential for constant propagation
• No recursion, no support for pipeline libraries

void traceRay() // always inlined {
// paste traversal shader
if (hit)
// paste closest-hit shader;

else
// paste miss shader

}
void main() {
// paste raygen shader

}

Implementing Raytracing Pipelines

Layout of a Raytracing pipeline - XDC 2023
“Separate Compilation” mode:
• Shader calls with indirect jump
• Allows shaders from pipeline libraries to be compiled ahead of time

Implementing Raytracing Pipelines

Layout of a Traversal Shader
void main() {
while (!traversal_complete) {
uint32_t node_pointer = get_next_node();
intersection_result result = image_bvh_intersect_ray(node_pointer);
if (result.hit) {
// paste any-hit/intersection shaders here
if (!hit_accepted)
continue;

}
}
if (hit)
call_closest_hit();

else
call_miss();

}

Implementing Raytracing Pipelines

Why not separately-compile the traversal
shader?
• Ray Traversal has lots of live state
• Any-Hit/Intersection shaders are relatively small yet called often
• High shader call overhead, negatively impacts performance

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Jump execution to arbitrary addresses stored in SBT
• Each invocation in a wavefront may have a different address
• Only one program counter per wavefront
• Naive solution: Choose program counter of first valid invocation
• Guard shader invocations to prevent invocations from executing wrong shaders
• Problem: Reconvergent shader calls become inefficient!

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Jump execution to arbitrary addresses stored in SBT
• Each invocation in a wavefront may have a different address
• Only one program counter per wavefront
• Naive solution: Choose program counter of first valid invocation
• Guard shader invocations to prevent invocations from executing wrong shaders
• Problem: Reconvergent shader calls become inefficient!

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Jump execution to arbitrary addresses stored in SBT
• Each invocation in a wavefront may have a different address
• Only one program counter per wavefront
• Naive solution: Choose program counter of first valid invocation
• Guard shader invocations to prevent invocations from executing wrong shaders
• Problem: Reconvergent shader calls become inefficient!

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Jump execution to arbitrary addresses stored in SBT
• Each invocation in a wavefront may have a different address
• Only one program counter per wavefront
• Naive solution: Choose program counter of first valid invocation
• Guard shader invocations to prevent invocations from executing wrong shaders
• Problem: Reconvergent shader calls become inefficient!

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Jump execution to arbitrary addresses stored in SBT
• Each invocation in a wavefront may have a different address
• Only one program counter per wavefront
• Naive solution: Choose program counter of first valid invocation
• Guard shader invocations to prevent invocations from executing wrong shaders
• Problem: Reconvergent shader calls become inefficient!

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Jump execution to arbitrary addresses stored in SBT
• Each invocation in a wavefront may have a different address
• Only one program counter per wavefront
• Naive solution: Choose program counter of first valid invocation
• Guard shader invocations to prevent invocations from executing wrong shaders
• Problem: Reconvergent shader calls become inefficient!

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Jump execution to arbitrary addresses stored in SBT
• Each invocation in a wavefront may have a different address
• Only one program counter per wavefront
• Naive solution: Choose program counter of first valid invocation
• Guard shader invocations to prevent invocations from executing wrong shaders
• Problem: Reconvergent shader calls become inefficient!

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Solution: Select shader based on type
• Certain shader types will always be preferred over others
• Prefer Hit/Miss over Traversal shaders
• Execute Raygen only when no other shaders are available
• Shader type is packed into the 2 LSBs of the shader’s address

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Solution: Select shader based on type
• Certain shader types will always be preferred over others
• Prefer Hit/Miss over Traversal shaders
• Execute Raygen only when no other shaders are available
• Shader type is packed into the 2 LSBs of the shader’s address

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Solution: Select shader based on type
• Certain shader types will always be preferred over others
• Prefer Hit/Miss over Traversal shaders
• Execute Raygen only when no other shaders are available
• Shader type is packed into the 2 LSBs of the shader’s address

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Solution: Select shader based on type
• Certain shader types will always be preferred over others
• Prefer Hit/Miss over Traversal shaders
• Execute Raygen only when no other shaders are available
• Shader type is packed into the 2 LSBs of the shader’s address

Implementing Raytracing Pipelines

Implementing Indirect Jumps
• Solution: Select shader based on type
• Certain shader types will always be preferred over others
• Prefer Hit/Miss over Traversal shaders
• Execute Raygen only when no other shaders are available
• Shader type is packed into the 2 LSBs of the shader’s address

Status And What’s To Come

Status And What’s To Come ▶ Where We Are

Compatibility
XDC 2022:
• Quake II RTX
• Control
• Deathloop
• Resident Evil: Village
• Metro Exodus Enhanced Edition

XDC 2023:
• General expectation is that new stuff works
• Some known issues (Witcher 3, Cyberpunk 2077 can hang currently)
• Something else broken?

◦ https://gitlab.freedesktop.org/mesa/mesa/-/issues/new

Status And What’s To Come ▶ Where We Are

Compatibility
XDC 2022:
• Quake II RTX
• Control
• Deathloop
• Resident Evil: Village
• Metro Exodus Enhanced Edition

XDC 2023:
• General expectation is that new stuff works
• Some known issues (Witcher 3, Cyberpunk 2077 can hang currently)
• Something else broken?

◦ https://gitlab.freedesktop.org/mesa/mesa/-/issues/new

Status And What’s To Come ▶ Where We Are

Performance

Status And What’s To Come ▶ Where We’re Going

Future Work
• Make remaining games work
• Make remaining games work fast
• Explore more sophisticated shader call techniques

◦ Shader Execution Reordering?
• Make the monolithic path work with pipeline libraries
• Take advantage of RDNA3 features
• Build higher quality BVHs
• AS Updates
• Tons of microoptimizations

Thank You!
Questions?

	Raytracing: A Quick Recap
	Acceleration Structures
	Raytracing Pipelines

	Implementing Acceleration Structures
	LBVH
	PLOC

	Implementing Raytracing Pipelines
	Status And What's To Come
	Where We Are
	Where We're Going

