With great power comes less
responsibility

Boris Brezillon (Collabora)
Danilo Krummrich (Red Hat)

Kernel mode driver, can you move away please?

» Modern userspace want more control

» GPU vendors want things to be fast and consume App

less power T L

» Less work to do. Should be easy-peasy, but...

We need to make sure UMD can't break the = ilB

UMD
system (some amount of checking is

needed) e |

- = = = — Kernel uAPI

We need to interact with a new piece of HW KMD
(the MCU executing the FW) KMD — e e e s R

Some frameworks no longer fit the bill FW

We have new features to support
‘RedHat ‘ ’O COLLABORA

Kernel mode driver, on the hardware front

& RedHat |C>Q oo

Kernel-based vs firmware-based scheduling

Userspace Kernel Hardware Userspace Kernel Firmware Hardware

I |
FWsched |
18) =
! |

I
I
|
I
V | Firmware | a
S |
I
I
I

()

I
I
| e N s
scheduling
VkQueue HI entity :

Y

I
|
| kernel scheduler scheduler
| » - m ot (e)

I Hardware queue

i I FW sched WA
..... v VkOueu - Eardware

VicOLieue schecIuImg Queue entity | |
enity | |

CPU GPU CPU MCU GPU

‘RedHat ‘ ’O COLLABORA

Hardware

drm_sched original design Userspace | NS R o
roo)
» Designed for kernel-based scheduling m ettty |
|

» Deals with job dependencies

|
|
|
J
|
drm_gpu_scheduler I .
J
|
I
|

')
» Priority-based entity selection with RR or | e e A e
F”__O pOI|Cy VkQueue l drm_sched_entity
| & J
> It's of great use for KMD drivers, but... ﬁ
» .. it's doing too much for FW-based Usere cermel Frrware Hardware
prc | _7 | |
scheduling ! (=) |
VkQuewe > Fv::tciryed ;_I__,_’Emed entey e Joppl B
— | | |
| | ﬁﬁﬁ i’t’
.| o) 1| ettt ()
| FW sched b3 AW sched entity | ardware
VkQueue T’ e : > i o
! | |
CPU MCU GPU

‘RedHat ‘ ’O COLLABORA

Solution: Teach drm_sched to be dumb

> Work Conducted by Userspace ' Kernel Firmware ' Hardware
| —_— e
Matthew Brost from Intel _irppneo (8 Py
. ' . VkQueue drm_sched_entity drm_gpu_scheduler ! Ring 1 @ @
» Single-entity scheduling '
policy - (B
> drm Sched St|” dea|s Wlth JOb VkQueue drm_sched_entity drm_gpu_scheduler l i queue i

dependencies

MCU
CPU (Falcon / GSP) GPU

» Therestislefttothe FW

‘RedHat ‘)o COLLABORA

Drm_sched single-entity implementation details

» Multi entity scheduler:
One scheduler per execution engine
One thread per scheduler
=> number of threads is acceptable
» Single entity scheduler
One scheduler per entity
Still one thread per scheduler
=> number of threads explodes
» Solution => use a workqueue instead of a thread and let drivers pass their own workqueue

» Fast path for single-entity scheduling (no complex entity selection needed, the FW takes care of that)

‘RedHat ‘ ’O COLLABORA

rm_sched single-entity implementation details

xfer data «oeeeeeeeees >
s blish wake up kick off async process ---------- > xler data -
Start submit job | P
kick off async process --
l job fence kthread S S _publish yne pi
job fence
! £
|
addjobto ; R
scheduler entity i { scheduler entity
(N o |
“ el “' fetch job from Job fence
‘ i st pending list signaled?
\ 4 no
fetch job from 7)
scheduler entity i kthread : |veS
Job fits on qQuewe | T T TT oo oo oo process
e O I 2 g br? e e
ring buffer? i -
paedrii!gg :ic;l pro scheduler workqueue
i ee job
Job fence queue process
signaled? free job work free job work
--------------------- 5 A
End ! drm_gpu_scheduler | proce kthread
LA B . ob should stop? e

kthread

workqueue

‘RedHat ‘ ’O COLLABORA

FW-based scheduling, the Mali way

» Small number of FW
scheduling slots available

» The kernel has to take partin

the scheduling process

» Adds another level of

scheduling kernel side

» Should work with the

usermode queue model ;-)

Userspace

VkQueue

VkQueue

VkQueue

L

Kernel

()

FW sched

drm_sched_entity L’ drm_gpu_scheduler —» entity

drm_sched_entity ‘—) drm_gpu_scheduler —»; FWSC_hed
‘ entity

drm_sched_entity —» drm_gpu_scheduler —» FVZ:;?;d

CPU

P wichedentity H4-D{ W sched entity

W
&y,

Firmware Hardware

=
o

FW sched entity f---+P> FW sched entity 13
scheduler
| i Y
panthog I Hardware
scheduler | ApEE

FW sched entity

MCU GPU

‘RedHat ‘)o COLLABORA

Kernel mode driver, on the user mode driver front

UMD

KMD

‘RedHat ‘ ’O OOOOOOOOO

What Vulkan wants

»

4

Vulkan has some new requirements not working with existing UAPIs

e.g. explicit synchronization and advanced VM management

lead to new “VM_BIND style” UAPIs giving userspace control of the GPU'’s virtual address space

dma-fence
dma-resv

buffer object

Implicit

— — |— dma-fence

4

dma-fence — 4

job

|
|
|
|
|
|

signal list

dma-fence

syncobj

dma-fence

syncobj

wait list

Explicit

‘RedHat ‘)o COLLABORA

VM_BIND style UAPIs

» VMLINIT - create a new GPU virtual address space

» VM_BIND - bind actual memory to a virtual address (create a mapping)

parameters: operation type (map/unmap), (virtual) address, size, BO (handle), offset within the

BO, synchronization objects (syncobj; wait list, signal list)
legal for map/unmap operations to arbitrarily span across existing mappings
synchronous and asynchronous variants
» EXEC - execute a GPU command buffer
parameters: virtual base address, size, syncobjs (in / out)
command buffers / shaders can operate on the whole VA space

hence requires validation underlying BOs of the VA space

‘RedHat ‘ ’O COLLABORA

UMD

Hardware

KMD DRM Scheduler
' VM_BIND(map, {{0x0, 0x1000}, {0x1000, 0x4000}}) :
> bind_job_submit(A) R :
H drm_sched_fence « H
. drm_syncobj o G R R EEEEEEEEEEEE .
G R L LR push(A) L
dma-fence o VJ
: EXEG(0x0, 0x1000, o) i e R R T L LR
T > exec_job_submit(B) _ |
drm_sched_fence B
' drm_syncobj B G R e L LR Rt '
[:
: VM_BIND(unmap, {{0x0, 0x5000}}, :
i = ¢ o, i . B) > bind_job_submit(C) _ H
H » :
E drm_sched_fence y
' drm_syncobj y mm e '
[Qrmmmrmns TR e e L :
i dma_fence_signal(o) .
| drm_sched_fence_finished(a) < 4
! drm_syncobj_signal(c) < ;
< L | push(B) L
E dma-fence B VD
: D ,
: drm_syncobj_wait(B)
X dma_fence_signal(B) !
drm_sched_fence_finished(B) <
drm_syncobj_signal(B) < H
< | push(C) .
1 handle_signal(B) R dmadfencey ... D
. dma_fence_signal(y)
o _ drm_sched_fence_finished(y) <]
T drm_syncobj_signal(y) <
<

‘RedHat ‘ ’O COLLABORA

'

DRM GPUVM

» common component to manage a GPU virtual address space
motivated by (but not limited to) Vulkan motivated UAPIs (VM_BIND)
» GPU Virtual Memory (Address Space)
» GPUVM was originally called DRM GPUVA Manager (in v6.6)
DRM GPU Virtual Address Manager
drivers typically call their structure VM
kernel documentation for Asynchronous VM_BIND and VM_BIND locking calls it “gpu_vm”

» Shout-out to Dave Airlie (Red Hat), who suggested having such a component in the first place

‘RedHat ‘ ’O COLLABORA

DRM GPUVM - What does it do?

» Merged upstream, comes with v6.6
infrastructure to track GPU VA allocations and mappings
connect GPU VA mappings to their backing buffers (DRM GEM objects)
break down complex map / unmap requests
into a set operations which drivers can perform directly, e.g.
mapping requests which intersect existent mappings
partial unmap requests
» Upcoming (targets v6.7)
common dma-resv for GEM objects local to the GPUVM,; tracks external GEM objects
helper functions lock all backing GEM objects; based on drm_exec (Christian Konig, AMD)
track evicted GEM objects

accelerate validation of backing GEM objects

‘RedHat ‘ ’O COLLABORA

DRM GPUVM - Structure

» drm_gpuvm - represents the GPU VA space
» drm_gpuva - represents a mapping

» drm_gpuvm_bo - represents a combination
of a VM and a GEM object

» drm_gpuvm_exec - drm_exec (Christian
Konig, AMD) abstraction to lock / unlock the
VA space’ mappings backing GEM objects

» drm_gpuva_op - base structure for map,

remap and unmap operations

» drm_gpuvm_ops - driver callbacks of a

drm_gpuvm

1

Vv

drm_gpuvm

rb_tree: struct rb_root_cached
kernel_alloc_node: struct drm_gpuva

extobj_list: struct list_head

evict_list: struct list_head

‘1

drm_gpuva drm_gpuvm_bo
addr: ué4 vm: struct drm_gpuvm
range: ué4 obj: struct drm_gem_object

obj: struct drm_gem_object gpuva_list: struct list_head

0.” | offset: ue4 1

drm_gpuvm_sm_map()
drm_gpuvm_sm_unmap()
drm_gpuvm_validate()

drm_gpuvm_resv_add_fence()

[

drm_gpuvm_exec

exec: struct drm_exec

vm: struct drm_gpuvm

drm_gpuvm_exec_lock()

drm_gpuvm_exec_unlock()

drm_gpuva_op_map
addr: u64
range: u4
obj: struct drm_gem_object

offset: ué4

W drm_gpuvm_bo_obtain()

drm_gpuvm_bo_evict()

drm_gpuva_insert()

drm_gpuva_remove() drm_gpuvm_bo_extobj_add()

drm_gpuva_link()
0.*
drm_gpuva_unlink()

— 1

drm_gpuvm_ops drm_gem_object

vm_bo_validate() vm_bo_list: struct list_head

sm_step_map()

sm_step_remap()

sm_step_unmap()

drm_gpuva_op

type: enum drm_gpuva_op_type

Extends

~

drm_gpuva_op_unmap

Extends Extends

drm_gpuva_op_remap
prev: struct drm_gpuva_op_map va: struct drm_gpuva
next: struct drm_gpuva_op_map

unmap: struct drm_gpuva_op_unmap

‘RedHat ‘ ’O COLLABORA

DRM GPUVM - Map / Unmap Operations

0 1 2 3 4 5 6
| | | | | | |
Address I I I I I I I
Current A (offset=0) B (offset=0) C (offset=2)
Request C (offset=4)
Result A (offset=0) C (offset=4) C (offset=3)
Map Remap Map
C[1,5] :|'> . g]ei‘af[o . UB'Eg’Z]p > C[4,7]—C[57] —» C[1,5]
offset=4 ’ ’ ’ offset={2— 3} offset=4

‘RedHat ‘ ’O COLLABORA

vkQueueBindSparse
ioctl()
for_each_memory_bind() L
+ IOCTL VM_BIND
)
[Obtain drm_gpuvm bo]
[Enter driver ioctl()]
[Create drm_gpuva ops] ¢
drm_gpuva_for_each_op() Initialize
; < drm_sched_job
[Allocate PTs / PTEs
Arm
[Update GPUVM tree > drm_sched_job
[L|nk/UnI|nk mappings] ¢
Update
drm_syncobj
[drm_gpuvm_lock()] ¢
Submit
[Va[|date BOs] drm_sched_job B
; v
[Add dma-resv fences]
[Return from ioctl()]
[drm_gpuvm_| unlock()]

+ drm_gpu_scheduler
y — run_job()

for_each_memory_bind()

drm_gpuva_for_each_op()

[Update PTs / PTEs]

v
Signal
drm_sched_fence

xfer data

kick off async process ---------- >

+ drm_gpu_scheduler
0 — free_job()

for_each_memory_bind()

drm_gpuva_for_each_op()

[Free PTs / PTEs]

v

Free
drm_sched_job

—

| GPU |

T

& RedHat

COLLABORA
»O

Driver status update: Nouveau

» New UAPIl implementing VM_BIND was merged upstream (released with v6.6)
sufficient for NVK to implement a fully functional Vulkan UMD
» Upcoming (targets v6.7):
making use of the drm_sched single-entity model
waiting for drm_sched patches (Matthew Brost, Intel)

performance improvements due to the tricks implemented in upcoming drm_gpuvm patches

(should land in drm-misc-next soon)
» What's missing:
userptr support (might be postponed in favor of landing the GSP patches)

utilize the DMA engine for page table updates (currently page tables are updated from the

CPU)
‘RedHat ‘ s cortasoRa

Driver status update: Panthor (Mali)

» Panthor uAPI should have enough to implement a functional Vulkan driver with all sort of fancy

extensions
» Panthor is using the drm_sched single-entity model
» Panthor has a VM_BIND ioctl and is using drm_gpuvm under the hood
» What's missing:
More testing
Transparent buffer object eviction
drm_gem_shmem patches from Dmitry Osipenko (Collabora) should help
An actual UMD driver making use of all these fancy features (panvk2, we're waiting for you :-))

Waiting for drm_sched and drm_gpuvm to be merged

‘RedHat ‘ ’O COLLABORA

Driver status update: PowerVR

» PowerVRis using drm_sched single-entity
» PowerVRis using drm_gpuvm
» PowerVR has a vulkan driver that makes use of these new ioctls and it's passing the 1.0 CTS \o/
» What's missing:
VM_BIND is not supported yet, just synchronous VM_MAP/UNMAP

Transparent buffer object eviction

‘RedHat ‘ ’O COLLABORA

Questions?

Additional Slides
(not part of the talk)

What Vulkan wants: Explicit synchronization

» Avoiding over-synchronization is the key
» Vulkan forces the user to express synchronization explicitly through various primitives

» Figuring out buffers needed for a specific job might be tricky (bindless)

signal list

;\

dma-fence

syncobj

— — |= dma-fence dma-fence — -

-

:\

dma-fence

job

dma-fence

_)

dma-resv syncobj

N buffer object /,/” \ J

wait list

ImpIICIt EXleClt ‘RedHat ‘ ’O COLLABORA

What Vulkan wants: Advanced VM management

» Lifetime of GPU buffers and their mappings in GPU VA space is well defined in Vulkan

» Sparse bindings (and sparse residency)

Image / buffer objects can be partially bound, and take their memory from different

VkDeviceMemory objects
» Aliasing: memory can be bound to several objects at the same time (there are restrictions though)
» Some extensions (VK_KHR_buffer_device_address) require fine grained control on the GPU VA space

» — UMDs require control of the GPU's virtual address space

‘RedHat ‘ ’O COLLABORA

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_buffer_device_address.html

DRM GPUVM - two state tracking modes

» Livingin the present moment:
VM state is updated right in time, along with the MMU page table update (slight delay if the page
table update is GPU-based)
» Planning for the future:
VM state is updated when VM_BIND jobs are submitted
VM state is ahead until all VM_BIND jobs have been flushed

‘RedHat ‘ ’O COLLABORA

DRM GPUVM - two state tracking modes

» Livingin the present moment:

Pros:

We can easily query the buffer object mapped at a GPU address without having to revert
diffs of pending jobs

Fast path for synchronous updates is easier to implement

We don't need complicated unwind logic in the ioctl() to revert the VA space on failure
Cons:

We have to over-provision page table allocations for async VM_BIND jobs (we don’t know
what the VM will look like when we get to execute the job)

We can't easily query the future VM state

‘RedHat ‘ ’O COLLABORA

DRM GPUVM - two state tracking modes

»

Planning for the future:

Pros:

Cons:

We can easily query the future VM state

We don't have to over-provision for page table allocation

VM_BIND (sync) are queued as async jobs which are waited upon in the ioctl path.
Fast-tracking of such operation is possible, but requires extra infrastructure to track fences
per VM range, plus a dedicated VM bind queue for sync operation.

Querying the current VM state is more complicated (might be a problem if the kernel driver
needs to get a BO from a GPU address)

‘RedHat ‘ ’O COLLABORA

