
With great power comes less 
responsibility

Boris Brezillon (Collabora)
Danilo Krummrich (Red Hat)



Kernel mode driver, can you move away please?

▸ Modern userspace want more control

▸ GPU vendors want things to be fast and consume 

less power

▸ Less work to do. Should be easy-peasy, but…

･ We need to make sure UMD can’t break the 

system (some amount of checking is 

needed)

･ We need to interact with a new piece of HW 

(the MCU executing the FW)

･ Some frameworks no longer fit the bill

･ We have new features to support



Kernel mode driver, on the hardware front



Kernel-based vs firmware-based scheduling

V
S



drm_sched original design

▸ Designed for kernel-based scheduling

▸ Deals with job dependencies

▸ Priority-based entity selection with RR or 

FIFO policy

▸ It’s of great use for KMD drivers, but…

▸ … it’s doing too much for FW-based 

scheduling



Solution: Teach drm_sched to be dumb

▸ Work conducted by 

Matthew Brost from Intel

▸ Single-entity scheduling 

policy

▸ drm_sched still deals with job 

dependencies

▸ The rest is left to the FW



Drm_sched single-entity implementation details
▸ Multi entity scheduler:

･ One scheduler per execution engine

･ One thread per scheduler

･ => number of threads is acceptable

▸ Single entity scheduler

･ One scheduler per entity

･ Still one thread per scheduler

･ => number of threads explodes

▸ Solution => use a workqueue instead of a thread and let drivers pass their own workqueue

▸ Fast path for single-entity scheduling (no complex entity selection needed, the FW takes care of that)



drm_sched single-entity implementation details

kthread workqueue



FW-based scheduling, the Mali way

▸ Small number of FW 

scheduling slots available

▸ The kernel has to take part in 

the scheduling process

▸ Adds another level of 

scheduling kernel side

▸ Should work with the 

usermode queue model ;-)



Kernel mode driver, on the user mode driver front



What Vulkan wants

▸ Vulkan has some new requirements not working with existing UAPIs

･ e.g. explicit synchronization and advanced VM management

▸ lead to new “VM_BIND style” UAPIs giving userspace control of the GPU’s virtual address space



VM_BIND style UAPIs

▸ VM_INIT - create a new GPU virtual address space

▸ VM_BIND - bind actual memory to a virtual address (create a mapping)

･ parameters: operation type (map/unmap), (virtual) address, size, BO (handle), offset within the 

BO, synchronization objects (syncobj; wait list, signal list)

･ legal for map/unmap operations to arbitrarily span across existing mappings

･ synchronous and asynchronous variants

▸ EXEC - execute a GPU command buffer

･ parameters: virtual base address, size, syncobjs (in / out)

･ command buffers / shaders can operate on the whole VA space

･ hence requires validation underlying BOs of the VA space





DRM GPUVM

▸ common component to manage a GPU virtual address space

･ motivated by (but not limited to) Vulkan motivated UAPIs (VM_BIND)

▸ GPU Virtual Memory (Address Space)

▸ GPUVM was originally called DRM GPUVA Manager (in v6.6)

･ DRM GPU Virtual Address Manager

･ drivers typically call their structure VM

･ kernel documentation for Asynchronous VM_BIND and VM_BIND locking calls it “gpu_vm”

▸ Shout-out to Dave Airlie (Red Hat), who suggested having such a component in the first place



DRM GPUVM - What does it do?

▸ Merged upstream, comes with v6.6

･ infrastructure to track GPU VA allocations and mappings

･ connect GPU VA mappings to their backing buffers (DRM GEM objects)

･ break down complex map / unmap requests

･ into a set operations which drivers can perform directly, e.g.

･ mapping requests which intersect existent mappings

･ partial unmap requests

▸ Upcoming (targets v6.7)

･ common dma-resv for GEM objects local to the GPUVM; tracks external GEM objects

･ helper functions lock all backing GEM objects; based on drm_exec (Christian König, AMD)

･ track evicted GEM objects

･ accelerate validation of backing GEM objects



DRM GPUVM - Structure

▸ drm_gpuvm - represents the GPU VA space

▸ drm_gpuva - represents a mapping

▸ drm_gpuvm_bo - represents a combination 

of a VM and a GEM object

▸ drm_gpuvm_exec - drm_exec (Christian 

König, AMD) abstraction to lock / unlock the 

VA space’ mappings backing GEM objects

▸ drm_gpuva_op - base structure for map, 

remap and unmap operations

▸ drm_gpuvm_ops - driver callbacks of a 

drm_gpuvm



DRM GPUVM - Map / Unmap Operations





Driver status update: Nouveau

▸ New uAPI implementing VM_BIND was merged upstream (released with v6.6)

･ sufficient for NVK to implement a fully functional Vulkan UMD

▸ Upcoming (targets v6.7):

･ making use of the drm_sched single-entity model

･ waiting for drm_sched patches (Matthew Brost, Intel)

･ performance improvements due to the tricks implemented in upcoming drm_gpuvm patches 

(should land in drm-misc-next soon)

▸ What’s missing:

･ userptr support (might be postponed in favor of landing the GSP patches)

･ utilize the DMA engine for page table updates (currently page tables are updated from the 

CPU)



Driver status update: Panthor (Mali)

▸ Panthor uAPI should have enough to implement a functional Vulkan driver with all sort of fancy 

extensions

▸ Panthor is using the drm_sched single-entity model

▸ Panthor has a VM_BIND ioctl and is using drm_gpuvm under the hood

▸ What’s missing:

･ More testing

･ Transparent buffer object eviction

･ drm_gem_shmem patches from Dmitry Osipenko (Collabora) should help

･ An actual UMD driver making use of all these fancy features (panvk2, we’re waiting for you :-))

･ Waiting for drm_sched and drm_gpuvm to be merged



Driver status update: PowerVR

▸ PowerVR is using drm_sched single-entity

▸ PowerVR is using drm_gpuvm

▸ PowerVR has a vulkan driver that makes use of these new ioctls and it’s passing the 1.0 CTS \o/

▸ What’s missing:

･ VM_BIND is not supported yet, just synchronous VM_MAP/UNMAP

･ Transparent buffer object eviction



Questions?



Additional Slides
(not part of the talk)



What Vulkan wants: Explicit synchronization

▸ Avoiding over-synchronization is the key

▸ Vulkan forces the user to express synchronization explicitly through various primitives

▸ Figuring out buffers needed for a specific job might be tricky (bindless)



What Vulkan wants: Advanced VM management

▸ Lifetime of GPU buffers and their mappings in GPU VA space is well defined in Vulkan

▸ Sparse bindings (and sparse residency)

･ Image / buffer objects can be partially bound, and take their memory from different 

VkDeviceMemory objects

▸ Aliasing: memory can be bound to several objects at the same time (there are restrictions though)

▸ Some extensions (VK_KHR_buffer_device_address) require fine grained control on the GPU VA space

▸ → UMDs require control of the GPU’s virtual address space

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_buffer_device_address.html


DRM GPUVM - two state tracking modes

▸ Living in the present moment:

･ VM state is updated right in time, along with the MMU page table update (slight delay if the page 

table update is GPU-based)

▸ Planning for the future:

･ VM state is updated when VM_BIND jobs are submitted

･ VM state is ahead until all VM_BIND jobs have been flushed



DRM GPUVM - two state tracking modes

▸ Living in the present moment:

･ Pros:

･ We can easily query the buffer object mapped at a GPU address without having to revert 

diffs of pending jobs

･ Fast path for synchronous updates is easier to implement

･ We don’t need complicated unwind logic in the ioctl() to revert the VA space on failure

･ Cons:

･ We have to over-provision page table allocations for async VM_BIND jobs (we don’t know 

what the VM will look like when we get to execute the job)

･ We can’t easily query the future VM state



DRM GPUVM - two state tracking modes

▸ Planning for the future:

･ Pros:

･ We can easily query the future VM state

･ We don’t have to over-provision for page table allocation

･ Cons:

･ VM_BIND (sync) are queued as async jobs which are waited upon in the ioctl path. 

Fast-tracking of such operation is possible, but requires extra infrastructure to track fences 

per VM range, plus a dedicated VM bind queue for sync operation.

･ Querying the current VM state is more complicated (might be a problem if the kernel driver 

needs to get a BO from a GPU address)


