g ¢

Debugging GPU faults: QoL
tools for your driver

Danylo Piliaiev
2023-10-17

}1 Q) igalia

Who Am I?

Currently implementing Adreno 7XX GPU generation
in Turnip
My blog: blogs.igalia.com/dpiliaiev

In the past

Worked on mobile video games
Debugging unruly games since 2018
At Igalia since November 2020

Q) igalia

https://blogs.igalia.com/dpiliaiev/

- 4

The Problem

"What if | was able to quickly edit this GPU packet?"
"What if | was able to dump this buffer here?"

Or "It would have been nice to print that shader
register!”

"I'll implement it Iater...."

v

Q) igalia

- 4

Unrecoverable Hangs - Roadblocks

e Computer completely locks up and has to be rebooted
e Last few seconds of logs/anything else are lost
e EXisting tooling isn't of much use with such
constraints
o GFR (Graphics Flight Recorder):
= VK layer for breadcrumbs

} = Dumps command buffers with commands' status

Q) igalia

- 4

Unrecoverable Hangs - Solution

More BREADCRUMBS!
e GFR writes results to the disk
e GFR logging is far behind what's actually runs on GPU
e GFR could be too high level:
o Blits/BeginRenderPass/EndRenderPass could
internally use a lot of different 2d and 3d blits

}5 Q) igalia

g ¢

Unrecoverable Hangs - Solution

Observations

e Unrecoverable hangs are rarely caused by sync issues
e Cannot allow GPU to race ahead of the last know
breadcrumb
e A hang may happen asynchronously to the GPU
packet that triggered it, e.q.
o A job is scheduled to another GPU unit
o That GPU unit hangs some time afterwards
} o There may not be a way to synchronize it

Q) igalia

4

Unrecoverable Hangs - Solution
The current solution in Turnip is:

Breadcrumbs are inserted after each GPU command
GPU writes a breadcrumb and immediately waits for
this value to be acknowledged

CPU in a busy loop checks the breadcrumb value

o |If new one is found, it is sent over the network
The CPU acks the breadcrumb and GPU continues

execution -, . .
& 1galia

g ‘

How Our Breadcrumbs Work

GPU executes this
command and
hangs

GPU GRD Wait @ Wait GRQ Wait

Read\ / Write Rea / Write

- @& @&

Send Send

Kernel|S€Nd over [poq BR2
network

' - . .
. & 1galia

Asynchronous hangs?

e Require explicit input in tty for each breadcrumb

breadcrumb 18, continue?y
breadcrumb 19, continue?y

breadcrumb 20, continue?y
breadcrumb 21, continue?

*, . .
: W 19alia

- Breadcrumbs In Practice

e Increase GPU hang timeout
e Receive breadcrumbs on another machine via bash
spaghetti

nc -lvup $PORT | stdbuf -00 xxd -pc -c 4 | \

awk -Wposix '{printf("%u:%u\n", "Ox" $0, a[$0]++)}

e Launch workload with TU_BREADCRUMBS envvar

TU_BREADCRUMBS=$IP:$PORT, break=$BREAKPOINT : $BREAKPO]

10

o | Alinch worklnad and hreak nn the last knnwn

- 4

Further Material

https://blogs.igalia.com/dpiliaiev/debugging-unrecoverable-hangs/

https://qitlab.freedesktop.org/mesa/mesa/-/merge_requests/15452

Q) igalia

11

https://blogs.igalia.com/dpiliaiev/debugging-unrecoverable-hangs/
https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/15452

- 4

Faster Way To Debug Hangs

}12 Q) igalia

Breadcrumbs Shortcoming

Breadcrumbs are good for finding 8 command that
hangs

They cannot tell which part of the GPU state caused
it

They are useless for misrenderings

Some issues are not reproducible with breadcrumbs

Q) igalia

- 4

Reproducing Hangs

e Drivers are already able to capture command streams
o And all used buffers

e With this it is trivial to replay the submissions back

e |deally requires user-space specified GPU addresses

}M Q) igalia

Replaying - Caveats

e Multiple queues
o When to re-upload memory?
o Just force a single queue?

e Timeline semaphores?

e Recordings may be huge

4

Q) igalia

- E

diting The Command Stream

e Even the most minimalistic editing is useful:

pkt(cs, 4128831);
pkt4(cs, 0x88d1, (2), 0);

pkt(cs, 4128831);
pkt7(cs, CP_MEM_WRITE, 20);

pkt(cs, 2061696);

pkt(cs, 64);
pkt(cs, 1216352390);
pkt(cs, 1107296256);

alia

16

17

const char

Editing Shaders

shps #137
getone #137

cov
CcoVv
CcoVv

end

)"
up load_shader (&ctx, 0x100200d80,

.u32f32 ril.w,
.u32f32 r2.x,
.u32f32 ril.y,

*source

— Rll(

ch04.z
c504.w
c504.x

source);
emit_shader_iova(&ctx, cs, 0x100200d80);

- 4

Replaying Edited Command Stream

e The decompiler emits C code with raw commands
e The replay tool takes original submissions capture:
o Finds unused memory range
o Emits edited command stream there
o QOverrides target submission

}lg Q) igalia

- 4

Dumping GPU Memory

e Dumping GPU memory is simple to implement
e Act of copying may disturb GPU caches
e Kernel cooperation is needed to implement it
properly:
o GPU interrupts execution e.qg. by faulting
o Now memory could be read undisturbed

}19 Q) igalia

20

Dumping Shader's Registers

e print %tmp_regs, %src_reg
o %tmp_regs - 3 consecutive free regs
= For 64b address and 32b tmp offset
o %src_reg - asingle register to print

Shader Log Entries: 6
[0] 00000004 0.0000
[1] 00000000 0.0000
[2] 00000000 0.0000

[3] 00000000 0.0000
[4] beadc429 -0.3394
[5] beadc429 -0.3394

- 4

Dumping Shader's Registers

e Want a nicer print? Just print $src_reg?
e You still need to allocate temporary registers

o What if there are no free regs?

o Spilling regs may not be that easy at this stage
e Too much trouble for a little gain...

}21 Q) igalia

- 4

Short Summary

A tool to replay command stream submissions

A tool to decompile a command stream into C code

An option to replay edit command stream

Helpers to dump GPU memory from the command
stream

Helpers to dump shader registers

T
2 & 19alia

- 4

Stale Regs In Command Stream

}23 Q) igalia

Debugging Stale Registers

e |t could be hard to spot stale reqg usage:
o |t may appear as a random geometry flicker
o Game hanging at 3 random moment
o Rare CTS test failure

. “ igalia

- 4

Stomping Registers - Caveats

Could be a bit tricky if 3 combination of regs causes
an issue

VK pipelines could be set outside a renderpass

Doesn't help if stale regs are between draw calls

Default invalid value may be valid for some reqisters

}25 Q) igalia

Stomping Registers

e We mark each reqister with where it is used:

"0x9600" "VPC_DBG_ECO_CNTL" "cmd"
"Oxb987" "HLSQ_CS_CNTL" "ABXX"

"Oxb984" "HLSQ_CONTROL_3_REG" "ABXX"
"Oxb985" "HLSQ_CONTROL_4_REG" "ABXX"

e To stomp register you need to specify:

export TU_DEBUG_STALE_REGS_RANGE=0x0c00, 0xbe01

export TU_DEBUG_STALE_REGS_FLAGS=cmdbuf, renderpass

alia

26

- 4

Turnip Tooling - Summary

e Unique tooling:
o Driver breadcrumbs
o Command stream replaying and editing
= GPU memory dumping
= Shader register dumping
o Debug option to find stale reg usage

}27 Q) igalia

- 4

Other Drivers and Tooling

}28 z::‘ igalia

- 4

Generic

e GFR - Graphics Flight Recorder
o Instruments command buffers with completion tags
m Uses VK_AMD_buffer_marker (nothing vendor
specific)
e |n vkd3d-proton:
o Breadcrumbs
o Shader printf

} o Descriptor debugging \ .
2 . .
\ & igalia

Other Mesa Drivers

Feature toggles and debug flags

Shader assembly replacement for debugging
GPU submissions decoding

GPU crash dumps decoding

Q) igalia

4

Radeon - UMR

GPU register dumps

SGPR / VGPR shader register dumps

Shader wavefront Debugging

Shader disassembly around the crash site

See Maister's blog post for it in action
https://themaister.net/blog/2023/08/20/hardcor
e-vulkan-debugging-digging-deep-on-linux-amd

o gpu/ - . .

& 19alia

https://themaister.net/blog/2023/08/20/hardcore-vulkan-debugging-digging-deep-on-linux-amdgpu/

- 4

Unreleased - Radeon - Shader Debugger

}32 Q) igalia

85

roprietary - Radeon™ GPU Detective

e Postmortem analysis of GPU crashes

e Information about page faults

e Breadcrumbs reflecting done and in-progress GPU
work

Command Buffer ID: 0x107c

"Frame 1040 CLO"
I-[X] "Depth + Normal + Motion Vector PrePass"
—[>] "DownSamplePS"

| F[X] Draw

| F[>] Draw

L-[>] "Bloom"
F[>] "Blurps"
| F[>] Draw
| Y[>] Draw

[1 braw
[1 "BlurPs"

alia

Proprietary - NVIDIA Aftermath

) Connect

Vkaftermathtestihr-22812- R CLIENTnv-gpudmp X
Dump Inf Crash Info

Active/Faulted Warps G
Filter To: | All - & Shader Hash: E8672E35EBABAOAO Shader Type: Compute
GPU Address ~ Faulted ActiveWarps | GPUID,SMID,WarpID ShaderType | Shader Hash Shader Location Language: Sass interleaved with Source ~ File:
~ compute_01 @ 0x000011d0 @ C 0xe8672e35ebaba0a0 w/devtools/Agora/Dev/Grfx/ 0x00001010
® 04900, 0x0, 0x5 e 0xeB672e35ebaba0a0 C:/swi/deviools/Agora/Dev/Grfx/Sha x00001620
0x900, 0x2, 0x0 Compute 0xe8672e35ebabalal 'sw/devtools/Agora/Dev/Grfx/Share

x00001030

x00001040

0x00001050

©x00001060
©x00001070
©x00001080
©x00001090

x00001020
Warp Info ©x000010b0
GPU Address

GPU Addr - x000010c0
GPU ID, SM ID, Warp 1D 0x900, 02, 0> ©x000010d0
ader Type Compute

e = x00001000 -NE.U32.AND
Shader Location

©x000010F0 .E.128.STRONG.SH [
Page Fault ©x00001160

©x00001110 -E.STRONG.SM [

Page faultinfo
GPU virtual address 0x0000000000000000 0x00001120
Fault Type Failed to translate the virtual address.

A Type Read

0x00001130 (P .E.STRONG.SH [

000001140 SETP.LE.U32.AND
Engine Graphics
Client

Graphics Proc

©x00001150 n

©X00001160 CP5 STG.E.STRONG.SM [R18.U32+
©x00001170 -E.STRONG.SM [R15.U32+
©x00001180 ¢P -E.128.STRONG.SM [R16.U32+4!
©x00001190 €P2 STG.E.STRONG.SM [R17.U32+l

©x00001120

Aftermath Markers __ 8x000011b0 LDC.64 URS, cx[!
® 0x000011c0 E.STRONG.SM
Context ~ Status Kind Payload Payload Size (bytes) Callstack

mandQueve 1 X Finished Automatic N/ 0 o £, i
ommandQueue 1 X Not Started 45 N/A 0x000011£0 E.STRONG.SM [i
mmandQueve2 X Finished 56 N/A 0x0601200

+ 0x000011de

Registers
Local
= 3200000 3f800000 R2 = 3f300000 3f800000 R4 = 35cd970 3d01bb60 be775¢e1 40940000 00600000 =

= 3eb60000 20000000 00000000 00003c00 0000320 00003c24
= 4e7c116d 3901000 R2: 00003c10 90000040 R24 = 00000002 90000000 3def6181 3f0b1d90 3dea®@e0 R29 = 3b190e59 3£0bu000 3a89ce1d 3aab6184 3b2c3024. 43400000

Predicate

PO=1 PL=1

Uniform

UR® = 00000000 UR1 = 00000808 00000000 00000080 UR4 = 00441e@0 URS = 00004000 UR6 = 08066808 | UR7 = 00000000 044e@OO0 UR9 = 00008000 UR10 = 0960080F URL1 = 00000006 UR12 = 00000E00 00000000 UR14 = 00000000
UR20 = 00000ROR UR21 = 00000600 00000000 = 00000000 UR24 = 00P0ROG UR25 = 00000000 UR26 = 000ROA0O UR27 = 000GROO UR2S = 00000000 UR29 = 0000R0R0 UR30 = 00000000 UR31 = 00000000 UR32 = 00000000 = 00000000 UR34 = 00000000

UR4O = 00000000 URH1 = 00000800 00000000 90000080 UR44 = 00000000 UR4S = 00000000 URHG = 00000008 URMT = 00000000 UR4S = 00900000 UR4O = 00000060 URSO = 00000000 URS1 = 08090000 URS2 = 00000000 URS3 = 00908000 URSY = 60000000
UR6O = 00000000 UR6L = 00980800 00000000 20800000

Uniform Predicate

34 upe =6

- 4

Proprietary - NVIDIA Aftermath

Collects GPU “*mini-dumps”
Visualizes GPU state at the moment of crash

Collects breadcrumbs

e Shows crashing shader and it registers

}35 C‘ igalia

. ¢
Q&A

e Any good tools | haven't mentioned?

e Maybe you tried something before?
e Maybe you have an idea for a tool to implement?

We're hiring!
igalia.com/jobs/ '-2
A & 19alia

https://www.igalia.com/jobs/

iIgalia
) igo
‘-

igalia
) iga
‘-

