
Debugging GPU faults: QoL
tools for your driver

Danylo Piliaiev

2023-10-17

1

Who Am I?
Currently implementing Adreno 7XX GPU generation
in Turnip
My blog:

In the past

Worked on mobile video games
Debugging unruly games since 2018
At Igalia since November 2020

blogs.igalia.com/dpiliaiev

2

https://blogs.igalia.com/dpiliaiev/

The Problem
"What if I was able to quickly edit this GPU packet?"
"What if I was able to dump this buffer here?"
Or "It would have been nice to print that shader
register!"

"I'll implement it later...."

3

Unrecoverable Hangs - Roadblocks

Computer completely locks up and has to be rebooted
Last few seconds of logs/anything else are lost
Existing tooling isn't of much use with such
constraints

GFR (Graphics Flight Recorder):
VK layer for breadcrumbs
Dumps command buffers with commands' status

4

Unrecoverable Hangs - Solution
More BREADCRUMBS!

GFR writes results to the disk
GFR logging is far behind what's actually runs on GPU
GFR could be too high level:

Blits/BeginRenderPass/EndRenderPass could
internally use a lot of different 2d and 3d blits

5

Unrecoverable Hangs - Solution
Observations

Unrecoverable hangs are rarely caused by sync issues
Cannot allow GPU to race ahead of the last know
breadcrumb
A hang may happen asynchronously to the GPU
packet that triggered it, e.g.

A job is scheduled to another GPU unit
That GPU unit hangs some time afterwards
There may not be a way to synchronize it

6

Unrecoverable Hangs - Solution

The current solution in Turnip is:

Breadcrumbs are inserted after each GPU command
GPU writes a breadcrumb and immediately waits for
this value to be acknowledged
CPU in a busy loop checks the breadcrumb value

If new one is found, it is sent over the network
The CPU acks the breadcrumb and GPU continues
execution

7

How Our Breadcrumbs Work

BR1 BR2 BR3

BR1

Send

GPU

CPU

GPU executes this
command and

hangs

Kernel BR1Send over
network

Wait Wait Wait

Read Write

BR2

Send

BR2

Read Write

8

Asynchronous hangs?

Require explicit input in tty for each breadcrumb

GPU is on breadcrumb 18, continue?y
GPU is on breadcrumb 19, continue?y
GPU is on breadcrumb 20, continue?y
GPU is on breadcrumb 21, continue?

9

Breadcrumbs In Practice

Increase GPU hang timeout
Receive breadcrumbs on another machine via bash
spaghetti

nc -lvup $PORT | stdbuf -o0 xxd -pc -c 4 | \
 awk -Wposix '{printf("%u:%u\n", "0x" $0, a[$0]++)}

Launch workload with TU_BREADCRUMBS envvar

TU_BREADCRUMBS=$IP:$PORT,break=$BREAKPOINT:$BREAKPOI

Launch workload and break on the last known
10

Further Material

https://blogs.igalia.com/dpiliaiev/debugging-unrecoverable-hangs/

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/15452

11

https://blogs.igalia.com/dpiliaiev/debugging-unrecoverable-hangs/
https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/15452

Faster Way To Debug Hangs

12

Breadcrumbs Shortcoming

Breadcrumbs are good for finding a command that
hangs
They cannot tell which part of the GPU state caused
it
They are useless for misrenderings
Some issues are not reproducible with breadcrumbs

13

Reproducing Hangs

Drivers are already able to capture command streams
And all used buffers

With this it is trivial to replay the submissions back
Ideally requires user-space specified GPU addresses

14

Replaying - Caveats

Multiple queues
When to re-upload memory?
Just force a single queue?

Timeline semaphores?
Recordings may be huge

15

Editing The Command Stream

Even the most minimalistic editing is useful:

/* pkt4: GRAS_2D_RESOLVE_CNTL_2 = { X = 63 | Y = 63 } */
pkt(cs, 4128831);
/* pkt4: RB_BLIT_SCISSOR_TL = { X = 0 | Y = 0 } */
pkt4(cs, 0x88d1, (2), 0);
/* pkt4: RB_BLIT_SCISSOR_BR = { X = 63 | Y = 63 } */
pkt(cs, 4128831);
pkt7(cs, CP_MEM_WRITE, 20);
/* { ADDR_LO = 0x1f7580 } */
pkt(cs, 2061696);
/* { ADDR_HI = 0x40 } */
pkt(cs, 64);
pkt(cs, 1216352390);
pkt(cs, 1107296256);

16

Editing Shaders

const char *source = R"(
 shps #l37
 getone #l37
 cov.u32f32 r1.w, c504.z
 cov.u32f32 r2.x, c504.w
 cov.u32f32 r1.y, c504.x

 end
)";
upload_shader(&ctx, 0x100200d80, source);
emit_shader_iova(&ctx, cs, 0x100200d80);

17

Replaying Edited Command Stream

The decompiler emits C code with raw commands
The replay tool takes original submissions capture:

Finds unused memory range
Emits edited command stream there
Overrides target submission

18

Dumping GPU Memory

Dumping GPU memory is simple to implement
Act of copying may disturb GPU caches
Kernel cooperation is needed to implement it
properly:

GPU interrupts execution e.g. by faulting
Now memory could be read undisturbed

19

Dumping Shader's Registers

print %tmp_regs, %src_reg

%tmp_regs - 3 consecutive free regs
For 64b address and 32b tmp offset

%src_reg - a single register to print

Shader Log Entries: 6
[0] 00000004 0.0000
[1] 00000000 0.0000
[2] 00000000 0.0000
[3] 00000000 0.0000
[4] beadc429 -0.3394
[5] beadc429 -0.3394

20

Dumping Shader's Registers

Want a nicer print? Just print $src_reg?
You still need to allocate temporary registers

What if there are no free regs?
Spilling regs may not be that easy at this stage

Too much trouble for a little gain...

21

Short Summary

A tool to replay command stream submissions
A tool to decompile a command stream into C code
An option to replay edit command stream
Helpers to dump GPU memory from the command
stream
Helpers to dump shader registers

22

Stale Regs In Command Stream

23

Debugging Stale Registers

It could be hard to spot stale reg usage:
It may appear as a random geometry flicker
Game hanging at a random moment
Rare CTS test failure

24

Stomping Registers - Caveats

Could be a bit tricky if a combination of regs causes
an issue
VK pipelines could be set outside a renderpass
Doesn't help if stale regs are between draw calls
Default invalid value may be valid for some registers

25

Stomping Registers

We mark each register with where it is used:

<reg32 offset="0x9600" name="VPC_DBG_ECO_CNTL" usage="cmd"/>
<reg32 offset="0xb987" name="HLSQ_CS_CNTL" variants="A6XX" usage="cmd"/>

<reg32 offset="0xb984" name="HLSQ_CONTROL_3_REG" variants="A6XX" usage="rp
<reg32 offset="0xb985" name="HLSQ_CONTROL_4_REG" variants="A6XX" usage="rp

To stomp register you need to specify:

export TU_DEBUG_STALE_REGS_RANGE=0x0c00,0xbe01
export TU_DEBUG_STALE_REGS_FLAGS=cmdbuf,renderpass

26

Turnip Tooling - Summary

Unique tooling:
Driver breadcrumbs
Command stream replaying and editing

GPU memory dumping
Shader register dumping

Debug option to find stale reg usage

27

Other Drivers and Tooling

28

Generic

GFR - Graphics Flight Recorder
Instruments command buffers with completion tags

Uses VK_AMD_buffer_marker (nothing vendor
specific)

In vkd3d-proton:
Breadcrumbs
Shader printf
Descriptor debugging

29

Other Mesa Drivers

Feature toggles and debug flags
Shader assembly replacement for debugging
GPU submissions decoding
GPU crash dumps decoding

30

Radeon - UMR

GPU register dumps
SGPR / VGPR shader register dumps
Shader wavefront Debugging
Shader disassembly around the crash site
See Maister's blog post for it in action

https://themaister.net/blog/2023/08/20/hardcor
e-vulkan-debugging-digging-deep-on-linux-amd
gpu/

31

https://themaister.net/blog/2023/08/20/hardcore-vulkan-debugging-digging-deep-on-linux-amdgpu/

Unreleased - Radeon - Shader Debugger

32

Proprietary - Radeon™ GPU Detective

Postmortem analysis of GPU crashes
Information about page faults
Breadcrumbs reflecting done and in-progress GPU
work

Command Buffer ID: 0x107c
=========================
[>] "Frame 1040 CL0"
 ├─[X] "Depth + Normal + Motion Vector PrePass"
 ├─[>] "DownSamplePS"
 │ ├─[X] Draw
 │ ├─[>] Draw
 └─[>] "Bloom"
 ├─[>] "BlurPS"
 │ ├─[>] Draw
 │ └─[>] Draw
 ├─[] Draw
 ├─[] "BlurPS"33

Proprietary - NVIDIA Aftermath

34

Proprietary - NVIDIA Aftermath

Collects GPU “mini-dumps”
Visualizes GPU state at the moment of crash
Collects breadcrumbs
Shows crashing shader and it registers

35

Q&A
Any good tools I haven't mentioned?
Maybe you tried something before?
Maybe you have an idea for a tool to implement?

We're hiring!
igalia.com/jobs/

36

https://www.igalia.com/jobs/

37

