The purple launcher icons are based on ‘
Material Design assets licensed under
Apache-2.0, other content exclusive of

_ trademarks is reusable under CC-BY-4.0

0000
(Open\'\/\ R.

OpenXR and the OpenXR logo are trademarks owned by The Khronos Group Inc. and are
registered as a trademark in China, the European Union, Japan and the United Kingdom

OpenXR on Android -
Source Included

Ryan A. Pavlik
FOSS XR 2022

’O COLLABORA Open FirSt

COLLABORA
O

Ryan Pavlik

Principal Engineer at
Collabora

OpenXR Specification
Editor

Open First

Outline

°* Requirements, use cases, and design decisions
°* What we built and how to use it
°* Question and answer time

* Note: | cannot and do not speak for the WG, but | can
discuss the considerations | discussed and kept in mind as
we built the stack to where it is today.

* “We"” might mean “working group” or might mean “the
Monado community”

’O COLLABORA Open FirSt

3

Sneak Peek

* You can run the same Hello XR
binary on the Vive Focus 3 and
on a stock Pixel 3 running
Monado in a Cardboard-style
“phone holder” headset

* The stack is designed to be open

source and support user choice.

’O COLLABORA Open First

4

COLLABORA
»O

Requirements and use cases

Background

* OpenXR provides a standard, uniform interface for XR
devices and runtimes

* Applications build against an “OpenXR Loader”, not a given
headset/runtime

* That loader finds the active runtime and dynamically loads
It, among other features

°* Runtimes may implement additional features as optional
“extensions”, which is how new APIs are prototyped

’O COLLABORA Open FirSt

6

The Basics

* Primary general requirement: a single loader (library) to use
on all OpenXR Android devices

— Should be possible to build a single APK to run on any Android-based OpenXR
device
* Main use cases
— All-in-one headset
— Plug-in viewers

— Slide-in “Phone holder”

’O COLLABORA Open FirSt

Use Cases

Ships with a single
Standalone p g
runtime, enabled by
Headset
default

Phone may ship with
default runtime,
should be overridable

Plug-in Viewer

User-installable
runtime

Slide-in User control over
Headset active runtime

Support existing
Android versions and
devices

COLLABORA
*O

Open First

Additional

Prefer native and JNI

requirements

Cannot use a "bound

code in loader (no
JVM code)

COLLABORA
*O

service"

Store
compatibility

Robust to
platform
updates

Security and
privacy

Minimize
permissions
for apps

Move most "runtime
finding" into a separate
package maintained by
the WG and community

Open First

Leading to our solution

Brokers provide "Content

Cannot use a "bound

service"

User-installable
runtime

Support existing
Android versions and
devices

User control over
active runtime

Move most "runtime
finding" into a separate
package

All-in-one: Ships with
a single runtime,
enabled by default

COLLABORA
*O

loader

Phone may ship with
default runtime,
should be overridable

g providers" accessed by the

"Installable" runtime broker:
a single canonical
package/app maintained by
the WG and community,
with runtime selection Ul

"System" runtime broker:
customized by phone/device
vendor to point to their
runtime

Loader checks installable
broker first, then system
broker, then fallback system
runtime manifest paths

Open First

[0]

COLLABORA
»O

What we built and how to use it

What: Installable broker + Ul

9:29

* Lists runtimes found by manifest metadata Installed Runtimes

Monado XR (Out-of-Proc)

* If none are selected, loader falls back to
system runtime, then system manifests et 020

* Plan to publish to F-Droid and Google Play

* Open source maintained by the Monado
project and the OpenXR WG

* Vendors must not customize this for their

runtime: use the published discovery

interface, or customize the system runtime

broker

COLLABORA -
’O https://gitlab.freedesktop.org/monado/utilities/openxr-android-broker Open FI rSt
12

https://gitlab.freedesktop.org/monado/utilities/openxr-android-broker

Using the Installable Broker

* Download and install a release from the GitLab project

* Install a runtime (just wait)

* Open the broker and enable your installed runtime

OpenXR

’O COLLABORA Open FirSt

13

What: Stubs for system runtime broker

& Android

* In the same repo/project as ibroker_ib

% installable_runtime_broker

* hativesampleclient

the installable broker, but - sampleclient

e system_runtime_broker

meant for vendors to > 8 manifests

v IEVE]

v Bl org.khronos.openxr.system_runtime_broker

Customize and Ship in their g SystemRuntimeBroker

g SystemRuntimeChooser

deVice image >= drawable
> mipmap
> values
* No Ul, meant to hard-code > ERutils

> M Gradle Scripts

runtime data

’O COLLABORA Open FirSt

14

How to use the system broker

* If you're using an HTC Vive * If you’re developing your

Focus 3: You already are own standalone device:
using it :) - clone/fork the runtime broker repo

- customize SystemRuntimeChooser
with your logic
- include the resulting APK in your

system image.

’O COLLABORA Open FirSt

15

What: Cross-Vendor Android Loader

* Connects to the OpenXR * Maintained in the same source

runtime brokers to find the tree as the desktop loaders: open

runtime to load source (Apache-2.0 OR MIT)

e One APK will be able to work on * AAR artifacts published to Maven

all Android-based OpenXR Central for Gradle usage, and

devices published on GitHub Releases

Some vendors are still migrating to this

from their legacy loader

)O COLLABORA Open First

16

Use it in Android Gradle Plugin

apply plugin: 'com.android.application'

android {
compileSdkVersion 29

ndkVersion '21.3.6528147'

defaultConfig {

applicationId = 'com.sample.teapotxr'

minSdkVersion 24

targetSdkVersion 29 // 30 breaks loader rn
}
externalNativeBuild {

cmake {

version '3.10.2'

path 'src/main/cpp/CMakeLists.txt’

COLLABORA
*O

// enable prefab support for the OpenXR AAR

buildFeatures {

prefab true

dependencies {

implementation 'org.Khronos.

openxr:openxr_loader_for_android:1.0.23"

Note: 1024 and 1025 have some
issues in the published AAR when

used with Gradle. Fix merged, will be

in the 1.0.26 AAR

/

Open First

What: Android release binaries

* Hello XR, in versions that ° OpenXR-CTS - Release APKs
default to Vulkan and will be available for next CTS
OpenGL-ES release

- Now includes the conformance layer in
the APK so conformance can pass on
non-rooted devices

- They still need adb shell setprop to

WO

’O COLLABORA Open FirSt

configure and run the tests, however: no

immersive or pancake Ul for test setup.

18

Get release binaries

* OpenXR-SDK-Source GitHub releases:

https://github.com/KhronosGroup/OpenXR-SDK-Source/releases/

* OpenXR-CTS GitHub releases (APKs coming soon):

https://github.com/KhronosGroup/OpenXR-CTS/releases/

’O COLLABORA Open FirSt

19

https://github.com/KhronosGroup/OpenXR-SDK-Source/releases/
https://github.com/KhronosGroup/OpenXR-CTS/releases/

What: Android support in Monado

°* Runs on Android, though not
officially conformant.

* By default runsin “phone-
holder mode” a la Google

Cardboard, using onboard

IMU on a wide range of

devices
’O COLLABORA Open FirSt

20

How to use Monado on Android

* “Debug”-signed APKs are built by Monado
Monado XR (Out-of-Proc)

v21.0.0-2537-g74d82ff-dirty
process” modes - download and install An XR Runtime, powered by Monado

Cl, in both “in-process” and “out-of-

* Or, build locally with Android Studio or
Gradle
Built-in Android VR Mode features are enabled for this
e Enable the runtime as “active” in the FUntime:
“installable” runtime broker
* Grab hello_xr binaries from the OpenXR-
Display over other apps is disabled for this runtime.

SDK-Source project releases or use some

other OpenXR app APK

’O COLLABORA Open First

21

Thank you to the community!

* Thanks to contributors to OpenXR-SDK-Source, the OpenXR
Android runtime broker repo, and Monado for helping to build

this software

* Thanks to the working group members who contributed

requirements, constraints, ideas, and code to the process

* Thanks to Collabora for funding my work on OpenXR and

Monado

’O COLLABORA Open First

22

How to participate

* Khronos public GitHub repos - open to contributions:

- Loader, Hello XR: https://github.com/KhronosGroup/OpenXR-SDK-Source
- CTS: https://github.com/KhronosGroup/OpenXR-CTS

* Runtime broker FrepPO: nttps://gitlab.freedesktop.org/monado/utilities/openxr-android-broker
* Monado: https://monado.freedesktop.org

* Android NDK sample “classic-teapot” ported to be an OpenXR app:
https://gitlab.freedesktop.org/monado/demos/androidteapots

* Khronos OpenXR WG - if employer is a Khronos member

’O COLLABORA Open FirSt

23

https://github.com/KhronosGroup/OpenXR-SDK-Source
https://github.com/KhronosGroup/OpenXR-CTS
https://gitlab.freedesktop.org/monado/utilities/openxr-android-broker
https://monado.freedesktop.org/
https://gitlab.freedesktop.org/monado/demos/androidteapots

O

Thank you!

’O COLLABORA Open FirSt

24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

