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Outline

°* Requirements, use cases, and design decisions
°* What we built and how to use it
°* Question and answer time

* Note: | cannot and do not speak for the WG, but | can
discuss the considerations | discussed and kept in mind as
we built the stack to where it is today.

* “We"” might mean “working group” or might mean “the
Monado community”
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Sneak Peek

* You can run the same Hello XR
binary on the Vive Focus 3 and
on a stock Pixel 3 running
Monado in a Cardboard-style
“phone holder” headset

* The stack is designed to be open

source and support user choice.
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Background

* OpenXR provides a standard, uniform interface for XR
devices and runtimes

* Applications build against an “OpenXR Loader”, not a given
headset/runtime

* That loader finds the active runtime and dynamically loads
It, among other features

°* Runtimes may implement additional features as optional
“extensions”, which is how new APIs are prototyped

’O COLLABORA Open FirSt
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The Basics

* Primary general requirement: a single loader (library) to use
on all OpenXR Android devices

— Should be possible to build a single APK to run on any Android-based OpenXR
device
* Main use cases
— All-in-one headset
— Plug-in viewers

—  Slide-in “Phone holder”
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Use Cases

Ships with a single
Standalone p g
runtime, enabled by
Headset
default

Phone may ship with
default runtime,
should be overridable

Plug-in Viewer

User-installable
runtime

Slide-in User control over
Headset active runtime

Support existing
Android versions and
devices

COLLABORA
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Additional

Prefer native and JNI

requirements

Cannot use a "bound

code in loader (no
JVM code)

COLLABORA
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service"

Store
compatibility

Robust to
platform
updates

Security and
privacy

Minimize
permissions
for apps

Move most "runtime
finding" into a separate
package maintained by
the WG and community
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Leading to our solution

Brokers provide "Content

Cannot use a "bound

service"

User-installable
runtime

Support existing
Android versions and
devices

User control over
active runtime

Move most "runtime
finding" into a separate
package

All-in-one: Ships with
a single runtime,
enabled by default

COLLABORA
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loader

Phone may ship with
default runtime,
should be overridable

g providers" accessed by the

"Installable" runtime broker:
a single canonical
package/app maintained by
the WG and community,
with runtime selection Ul

"System" runtime broker:
customized by phone/device
vendor to point to their
runtime

Loader checks installable
broker first, then system
broker, then fallback system
runtime manifest paths

Open First
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What: Installable broker + Ul

9:29

* Lists runtimes found by manifest metadata Installed Runtimes

Monado XR (Out-of-Proc)

* If none are selected, loader falls back to
system runtime, then system manifests et 020

* Plan to publish to F-Droid and Google Play

* Open source maintained by the Monado
project and the OpenXR WG

* Vendors must not customize this for their

runtime: use the published discovery

interface, or customize the system runtime

broker

COLLABORA -
’O https://gitlab.freedesktop.org/monado/utilities/openxr-android-broker Open FI rSt
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https://gitlab.freedesktop.org/monado/utilities/openxr-android-broker

Using the Installable Broker

* Download and install a release from the GitLab project

* Install a runtime (just wait)

* Open the broker and enable your installed runtime

OpenXR

’O COLLABORA Open FirSt
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What: Stubs for system runtime broker

& Android

* In the same repo/project as ibroker_ib

% installable_runtime_broker

* hativesampleclient

the installable broker, but - sampleclient

e system_runtime_broker

meant for vendors to > 8 manifests

v IEVE]

v Bl org.khronos.openxr.system_runtime_broker

Customize and Ship in their g SystemRuntimeBroker

g SystemRuntimeChooser

deVice image >= drawable
> mipmap
> values
* No Ul, meant to hard-code > ERutils

> M Gradle Scripts

runtime data

’O COLLABORA Open FirSt
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How to use the system broker

* If you're using an HTC Vive * If you’re developing your

Focus 3: You already are own standalone device:
using it :) - clone/fork the runtime broker repo

- customize SystemRuntimeChooser
with your logic
- include the resulting APK in your

system image.

’O COLLABORA Open FirSt
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What: Cross-Vendor Android Loader

* Connects to the OpenXR * Maintained in the same source

runtime brokers to find the tree as the desktop loaders: open

runtime to load source (Apache-2.0 OR MIT)

e One APK will be able to work on * AAR artifacts published to Maven

all Android-based OpenXR Central for Gradle usage, and

devices published on GitHub Releases

Some vendors are still migrating to this

from their legacy loader

)O COLLABORA Open First
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Use it in Android Gradle Plugin

apply plugin: 'com.android.application'

android {
compileSdkVersion 29

ndkVersion '21.3.6528147'

defaultConfig {

applicationId = 'com.sample.teapotxr'

minSdkVersion 24

targetSdkVersion 29 // 30 breaks loader rn
}
externalNativeBuild {

cmake {

version '3.10.2'

path 'src/main/cpp/CMakeLists.txt’

COLLABORA
*O

// enable prefab support for the OpenXR AAR

buildFeatures {

prefab true

dependencies {

implementation 'org.Khronos.

openxr:openxr_loader_for_android:1.0.23"

Note: 1024 and 1025 have some
issues in the published AAR when

used with Gradle. Fix merged, will be

in the 1.0.26 AAR

/
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What: Android release binaries

* Hello XR, in versions that ° OpenXR-CTS - Release APKs
default to Vulkan and will be available for next CTS
OpenGL-ES release

- Now includes the conformance layer in
the APK so conformance can pass on
non-rooted devices

- They still need adb shell setprop to

WO

’O COLLABORA Open FirSt

configure and run the tests, however: no

immersive or pancake Ul for test setup.
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Get release binaries

* OpenXR-SDK-Source GitHub releases:

https://github.com/KhronosGroup/OpenXR-SDK-Source/releases/

* OpenXR-CTS GitHub releases (APKs coming soon):

https://github.com/KhronosGroup/OpenXR-CTS/releases/

’O COLLABORA Open FirSt
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https://github.com/KhronosGroup/OpenXR-SDK-Source/releases/
https://github.com/KhronosGroup/OpenXR-CTS/releases/

What: Android support in Monado

°* Runs on Android, though not
officially conformant.

* By default runsin “phone-
holder mode” a la Google

Cardboard, using onboard

IMU on a wide range of

devices
’O COLLABORA Open FirSt
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How to use Monado on Android

* “Debug”-signed APKs are built by Monado
Monado XR (Out-of-Proc)

v21.0.0-2537-g74d82ff-dirty
process” modes - download and install An XR Runtime, powered by Monado

Cl, in both “in-process” and “out-of-

* Or, build locally with Android Studio or
Gradle
Built-in Android VR Mode features are enabled for this
e Enable the runtime as “active” in the FUntime:
“installable” runtime broker
* Grab hello_xr binaries from the OpenXR-
Display over other apps is disabled for this runtime.

SDK-Source project releases or use some

other OpenXR app APK

’O COLLABORA Open First
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Thank you to the community!

* Thanks to contributors to OpenXR-SDK-Source, the OpenXR
Android runtime broker repo, and Monado for helping to build

this software

* Thanks to the working group members who contributed

requirements, constraints, ideas, and code to the process

* Thanks to Collabora for funding my work on OpenXR and

Monado

’O COLLABORA Open First
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How to participate

* Khronos public GitHub repos - open to contributions:

- Loader, Hello XR: https://github.com/KhronosGroup/OpenXR-SDK-Source
- CTS: https://github.com/KhronosGroup/OpenXR-CTS

* Runtime broker FrepPO: nttps://gitlab.freedesktop.org/monado/utilities/openxr-android-broker
* Monado: https://monado.freedesktop.org

* Android NDK sample “classic-teapot” ported to be an OpenXR app:
https://gitlab.freedesktop.org/monado/demos/androidteapots

* Khronos OpenXR WG - if employer is a Khronos member

’O COLLABORA Open FirSt
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https://github.com/KhronosGroup/OpenXR-SDK-Source
https://github.com/KhronosGroup/OpenXR-CTS
https://gitlab.freedesktop.org/monado/utilities/openxr-android-broker
https://monado.freedesktop.org/
https://gitlab.freedesktop.org/monado/demos/androidteapots
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Thank you!
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