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Oculus Headsets

● Rift DK2 / CV1
● “Outside-In” tracking

● Rift S
● “Inside-out” tracking

● Not Quest / Quest 2



 

Constellation System (CV1)

● Camera sensors see IR
● LED models from firmware

– headband adjustments, 
occlusion mean they don’t 
match

● LEDs are pulsed in sync with 
the camera

● Track IR blobs… extract 
poses

● Need to know camera poses



 

● Need to know the camera 
positions

● Work backward from views of the 
headset

● Run once each time the 
configuration changes

● Gives an [x,y,z] position+[w,x,y,z] 
quaternion for each camera

● Can do online estimation

Camera Poses



 

CV1 Details

● Mostly a UVC camera, with quirks
● 52.0833 FPS (19.2ms / frame)
● No Linux kernel support for Variable length controls
● UVC in userspace = scheduling problems

● Frame exposure synchronisation
● HMD ↔ Controller radio link

● Match up HMD exposures with capture
● Based on frame arrival times and IMU sample times
● Frames from different cameras have different arrival times though!



 

Constellation System (Rift S)

● 5 cameras on the headset
● Fewer LEDs = easier

● Only the controllers

● But the cameras move
● The SLAM/VIO is the hard part
● (later)



 

Correspondences

● Matching which blob is which LED. Home-brew depth-first search
● Pre-sort LED model positions based into lists of proximate neighbours
● Sort observed blobs by proximity
● Match groups of 4 LEDs to 4 blobs. Extract pose using LambdaTwist 

P3P and validate 4th point – then assess ‘pose score’
● Score based on expected matches in the bounding box / visibility of 

LEDs
● Two-pass strategy for big speed increase (test only nearest LEDs first)



 

Using the IMU

● 3DOF tracking
● Let’s us align gravity vectors
● Reduces the viable 

correspondences
● Can do better – 2-point 

correspondence + gravity
● Can do even better… 6DOF 

fusion



 

IMU+Vision Fusion
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Latency

● Frames start arriving every 19.2ms
● USB transfer time ~17-18ms

● Image processing takes time
● JPEG decode (for USB 2.0), 2-3ms
● Blob extraction, RANSAC, 1-10ms
● Correspondence search – can be over 100ms

● (but more often < 40ms)

● IMU fusion is very quick
● has to be less than 1ms



 

Kalman Filtering

● Improved sensor fusion
● Unscented Kalman Filter
● Tracks position, rotation, extracts IMU biases
● “Slots” for lagged position updating.

● Pretty expensive
● Runs every 1ms for the headset, 2ms for controllers
● Could perhaps run at camera rate and predict in between?



 

Avoiding Glitches

● Extracted poses aren’t always 
right

● Mis-identified LEDs
● Room for improvement
● RANSAC PnP flakiness

● Prediction time limited when 
tracking is lost

● 1€ exponential filter for 
smoothing reported pose



 

Good Tracking



 

Rift S Inside-out SLAM/VIO

● Monado, Basalt
● Exposure compensation
● Distortion compensation

● Native “Fisheye62” model
● Basalt conversion

● Attach the calculated pose to 
each frame



 

Rift S Controllers

● Need the camera pose to predict controller LEDs
● From the previous interleaved frame + prediction
● SLAM better keep up (prediction error directly affects controller jitter)

● Controllers might cross view boundaries
● Unlike CV1, camera frames all arrive together



 

Future Directions

● Fusion performance improvements
● IMU integration, fusion at camera rates
● Explore optimisation approaches

● Improve pose extraction
● Better blob position refinement
● Figure out OpenCV ransac glitches
● ML approaches to correspondence?

● Continue simulator / replay work
● Controller tracking for Rift S + WMR



 

Protocol Reversing



 

Protocol Reversing

● Sources of information:
● Code decompiling
● USB packet captures

● Either could be a breach of the EULA
● But still might be legal in your jurisdiction
● Log files from the official software can be enlightening



 

USB packet capture

● Wireshark + USBpcap on 
Windows

● Find which USB root device 
the port is on first

● Great to capture the first 
connect

● Usually a firmware update
● Capture without fw update too



 

USB packets

● Setup via HID GET/SET reports is normal.
● IMU on USB interrupt
● Controllers / radio traffic

● Often on another USB interrupt endpoint
● Isochronous in for camera
● Isochronous out for audio



 

Looking for patterns

● Common operations
● Turn on the screen
● Enable IMU

● Known values in hex dumps
● Screen resolutions, physical 

dimensions
● Floating point values

● Take lots of notes



 

Simple tests

● Replay earliest HID packets
● This is when it’s useful to know which packets might modify firmware

● Omit or reorder packets, see what happens
● Try modifying values in the packets
● Pay attention to inter-packet timing or repetitions

● Maybe something is polled until a completion value
● Some operations take time



 

Rift S Radio Report
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Questions:

● Jan Schmidt <jan@centricular.com>
● @thaytan
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