
 1

Free drivers for Oculus Rift headsets

● Jan Schmidt <jan@centricular.com>
● @thaytan

FossXR 2022

mailto:jan@centricular.com


 2

Oculus Headsets

● Rift DK2 / CV1
● “Outside-In” tracking

● Rift S
● “Inside-out” tracking

● Not Quest / Quest 2



 

Constellation System (CV1)

● Camera sensors see IR
● LED models from firmware

– headband adjustments, 
occlusion mean they don’t 
match

● LEDs are pulsed in sync with 
the camera

● Track IR blobs… extract 
poses

● Need to know camera poses



 

● Need to know the camera 
positions

● Work backward from views of the 
headset

● Run once each time the 
configuration changes

● Gives an [x,y,z] position+[w,x,y,z] 
quaternion for each camera

● Can do online estimation

Camera Poses



 

CV1 Details

● Mostly a UVC camera, with quirks
● 52.0833 FPS (19.2ms / frame)
● No Linux kernel support for Variable length controls
● UVC in userspace = scheduling problems

● Frame exposure synchronisation
● HMD ↔ Controller radio link

● Match up HMD exposures with capture
● Based on frame arrival times and IMU sample times
● Frames from different cameras have different arrival times though!



 

Constellation System (Rift S)

● 5 cameras on the headset
● Fewer LEDs = easier

● Only the controllers

● But the cameras move
● The SLAM/VIO is the hard part
● (later)



 

Correspondences

● Matching which blob is which LED. Home-brew depth-first search
● Pre-sort LED model positions based into lists of proximate neighbours
● Sort observed blobs by proximity
● Match groups of 4 LEDs to 4 blobs. Extract pose using LambdaTwist 

P3P and validate 4th point – then assess ‘pose score’
● Score based on expected matches in the bounding box / visibility of 

LEDs
● Two-pass strategy for big speed increase (test only nearest LEDs first)



 

Using the IMU

● 3DOF tracking
● Let’s us align gravity vectors
● Reduces the viable 

correspondences
● Can do better – 2-point 

correspondence + gravity
● Can do even better… 6DOF 

fusion



 

IMU+Vision Fusion

Inputs

HMD

Left 
Controller

Right 
Controller

Camera

Camera

IMU Fusion

IMU Fusion

IMU Fusion

Position and Pose 
Outputs

HMD

Left 
Controller

Right 
Controller

IMU data

IMU Corrections

Room Calibration

LED blob 
tracking Pose OK? Ab-initio 

Pose Finder
Pose 

Refinement

No

Yes

Room 
Transform

Blob Labels

LED blob 
tracking Pose OK? Ab-initio 

Pose Finder
Pose 

Refinement

No

Yes

Room 
Transform

Blob Labels

Computer Vision

Prediction



 

Latency

● Frames start arriving every 19.2ms
● USB transfer time ~17-18ms

● Image processing takes time
● JPEG decode (for USB 2.0), 2-3ms
● Blob extraction, RANSAC, 1-10ms
● Correspondence search – can be over 100ms

● (but more often < 40ms)

● IMU fusion is very quick
● has to be less than 1ms



 

Kalman Filtering

● Improved sensor fusion
● Unscented Kalman Filter
● Tracks position, rotation, extracts IMU biases
● “Slots” for lagged position updating.

● Pretty expensive
● Runs every 1ms for the headset, 2ms for controllers
● Could perhaps run at camera rate and predict in between?



 

Avoiding Glitches

● Extracted poses aren’t always 
right

● Mis-identified LEDs
● Room for improvement
● RANSAC PnP flakiness

● Prediction time limited when 
tracking is lost

● 1€ exponential filter for 
smoothing reported pose



 

Good Tracking



 

Rift S Inside-out SLAM/VIO

● Monado, Basalt
● Exposure compensation
● Distortion compensation

● Native “Fisheye62” model
● Basalt conversion

● Attach the calculated pose to 
each frame



 

Rift S Controllers

● Need the camera pose to predict controller LEDs
● From the previous interleaved frame + prediction
● SLAM better keep up (prediction error directly affects controller jitter)

● Controllers might cross view boundaries
● Unlike CV1, camera frames all arrive together



 

Future Directions

● Fusion performance improvements
● IMU integration, fusion at camera rates
● Explore optimisation approaches

● Improve pose extraction
● Better blob position refinement
● Figure out OpenCV ransac glitches
● ML approaches to correspondence?

● Continue simulator / replay work
● Controller tracking for Rift S + WMR



 

Protocol Reversing



 

Protocol Reversing

● Sources of information:
● Code decompiling
● USB packet captures

● Either could be a breach of the EULA
● But still might be legal in your jurisdiction
● Log files from the official software can be enlightening



 

USB packet capture

● Wireshark + USBpcap on 
Windows

● Find which USB root device 
the port is on first

● Great to capture the first 
connect

● Usually a firmware update
● Capture without fw update too



 

USB packets

● Setup via HID GET/SET reports is normal.
● IMU on USB interrupt
● Controllers / radio traffic

● Often on another USB interrupt endpoint
● Isochronous in for camera
● Isochronous out for audio



 

Looking for patterns

● Common operations
● Turn on the screen
● Enable IMU

● Known values in hex dumps
● Screen resolutions, physical 

dimensions
● Floating point values

● Take lots of notes



 

Simple tests

● Replay earliest HID packets
● This is when it’s useful to know which packets might modify firmware

● Omit or reorder packets, see what happens
● Try modifying values in the packets
● Pay attention to inter-packet timing or repetitions

● Maybe something is polled until a completion value
● Some operations take time



 

Rift S Radio Report



 24

Questions:

● Jan Schmidt <jan@centricular.com>
● @thaytan

FossXR 2022

mailto:jan@centricular.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

