FossXR 2022

Free drivers for Oculus Rift headsets

- Jan Schmidt <jan@centricular.com>
- @thaytan

Oculus Headsets

- Rift DK2 / CV1
 - "Outside-In" tracking
- Rift S
 - "Inside-out" tracking
- Not Quest / Quest 2

Constellation System (CV1)

- Camera sensors see IR
- LED models from firmware
 - headband adjustments, occlusion mean they don't match
- LEDs are pulsed in sync with the camera
- Track IR blobs... extract poses
- Need to know camera poses

Camera Poses

- Need to know the camera positions
- Work backward from views of the headset
- Run once each time the configuration changes

- Gives an [x,y,z] position+[w,x,y,z] quaternion for each camera
- Can do online estimation

Centricular

CV1 Details

- Mostly a UVC camera, with quirks
 - 52.0833 FPS (19.2ms / frame)
 - No Linux kernel support for Variable length controls
 - UVC in userspace = scheduling problems
- Frame exposure synchronisation
 - HMD ↔ Controller radio link
- Match up HMD exposures with capture
 - Based on frame arrival times and IMU sample times
 - Frames from different cameras have different arrival times though!

Constellation System (Rift S)

- 5 cameras on the headset
- Fewer LEDs = easier
 - Only the controllers

- But the cameras move
 - The SLAM/VIO is the hard part

• (later)

Correspondences

- Matching which blob is which LED. Home-brew depth-first search
- Pre-sort LED model positions based into lists of proximate neighbours
- Sort observed blobs by proximity
- Match groups of 4 LEDs to 4 blobs. Extract pose using LambdaTwist P3P and validate 4th point – then assess 'pose score'
- Score based on expected matches in the bounding box / visibility of LEDs
- Two-pass strategy for big speed increase (test only nearest LEDs first)

Using the IMU

- 3DOF tracking
 - Let's us align gravity vectors
 - Reduces the viable correspondences
- Can do better 2-point correspondence + gravity
- Can do even better... 6DOF fusion

IMU+Vision Fusion

Latency

- Frames start arriving every 19.2ms
 - USB transfer time ~17-18ms
- Image processing takes time
 - JPEG decode (for USB 2.0), 2-3ms
 - Blob extraction, RANSAC, 1-10ms
 - Correspondence search can be over 100ms
 - (but more often < 40ms)
- IMU fusion is very quick
 - has to be less than 1ms

Kalman Filtering

- Improved sensor fusion
 - Unscented Kalman Filter
 - Tracks position, rotation, extracts IMU biases
 - "Slots" for lagged position updating.
- Pretty expensive
 - Runs every 1ms for the headset, 2ms for controllers
 - Could perhaps run at camera rate and predict in between?

Avoiding Glitches

- Extracted poses aren't always right
 - Mis-identified LEDs
 - Room for improvement
 - RANSAC PnP flakiness
- Prediction time limited when tracking is lost
- 1€ exponential filter for smoothing reported pose

Good Tracking

Rift S Inside-out SLAM/VIO

- Monado, Basalt
- Exposure compensation
- Distortion compensation
 - Native "Fisheye62" model
 - Basalt conversion
- Attach the calculated pose to each frame

Rift S Controllers

- Need the camera pose to predict controller LEDs
 - From the previous interleaved frame + prediction
 - SLAM better keep up (prediction error directly affects controller jitter)
- Controllers might cross view boundaries
- Unlike CV1, camera frames all arrive together

Future Directions

- Fusion performance improvements
 - IMU integration, fusion at camera rates
 - Explore optimisation approaches
- Improve pose extraction
 - Better blob position refinement
 - Figure out OpenCV ransac glitches
 - ML approaches to correspondence?
- Continue simulator / replay work
- Controller tracking for Rift S + WMR

Protocol Reversing

Protocol Reversing

- Sources of information:
 - Code decompiling
 - USB packet captures
- Either could be a breach of the EULA
- But still might be legal in your jurisdiction
- Log files from the official software can be enlightening

USB packet capture

- Wireshark + USBpcap on Windows
- Find which USB root device the port is on first
- Great to capture the first connect
 - Usually a firmware update
 - Capture without fw update too

File	Edit	View	Go C	apture	Analyze	Statistics	: Teleph	ony W	ireless	Tools	Help)				
Δ		0	G		<u>ି</u> ର		≻	\gg			F i]	C			
📕 Ap	oply a di	splay f	ilter <(Ctrl-/>												+
No.			Time	Sour	ce			De	stinatior	۱					Pro	
1	9	18259	359.2274	4 3.6.:	1			hos	st						USB	
	9	18260	359.228	1… host				3.0	5.1						USB	
	9	18261	359.228	2 3.32	.5			hos	st						USB	
	9	18262	359.2282	2… host				3.3	32.5						USB	
	9	18263	359.228	2 3.32	. 3			hos	st						USB	
	9	18264	359.228	2… host				3.3	32.3						USB	
	9	18265	359.2282	2 3.32	. 4			hos	st						USB	
	9	18266	359.228	2… host				з.:	32.4						USB	
	9	18267	359.228	9 3.32	.5			hos	st						USB	
	9	18268	359.2289	9… host				3.3	32.5						USB	
	9	18269	359.2299	9 3.32	.5			hos	st						USB	
>-Fra	ame 9182	263: 9	1 bvtes	on wire	(728 bit:	s), 91 byt	tes captu	red (728	3 bits)	on int	erface	wires	shark	extcar	01368, ic	0

Frame 918263: 91 bytes on wire (728 bits), 91 bytes captured (728 bits) on interface wireshark_extcap1368, id 0 USB URB

ID Data: 65000049d08f100034f7b7ff43f360fed6ffb400c7040b3ef7bbff37f35bfed6ffba00c4...

-																		
	00	2f	71	1a	10	00	00	40	04	00	00						·/q····@···	
	80	10	f7	88	ff	63	f2	c9	ff	9d	fe	1c	01	b9	04	00		
	04	0b	3e	f7	bb	ff	37	f3	5b	fe	d6	ff	ba	00	c4	04	··>···7· [·····	
	8f	10	00	34	f7	b7	ff	43	f3	60	fe	d6	ff	b4	00	c7	···4···C ·`····	
	01	03	00	20	00	83	01	40	00	00	00	65	00	00	49	d0	····@···e··I·	
	1b	00	70	b7	b2	14	8f	df	ff	ff	00	00	00	00	09	00	p	

USB packets

- Setup via HID GET/SET reports is normal.
- IMU on USB interrupt
- Controllers / radio traffic
 - Often on another USB interrupt endpoint
- Isochronous in for camera
- Isochronous out for audio

Looking for patterns

- Common operations
 - Turn on the screen
 - Enable IMU
- Known values in hex dumps
 - Screen resolutions, physical dimensions
 - Floating point values
- Take lots of notes

(0x06) - Get the dis display info:	play configura	ation	
06 a0 05 00 0a 01	00 50 fe 03 e	ef 01 d2 00	5a 00 PZ.
0c 00 01 00 02 00			
Vertical: 1440 (0x	5a0) Horiz: 25	560 (0xa00)	Hz: 80
Unk0: 1 Unk1: 3244	1342 Unk2: 589	98450 Unk3:	65548 Unk4: 2
$0 \times 5 a 0 = 1440$	0xa00 = 2560)	
0×001	0x50 = 80 H	lz	
03fe = 1022	01ef = 495		
00d2 = 210	005a = 90		
000c = 12	0001	0002	

9 (0x09)	= (GET	REF	PORT	ID	9	(re	espo	onse	e le	en 2	21)				
-	imu	con	fig														
0010													09	e8	03	00	
0020	00	6f	12	03	42	00	00	80	45	66	66	a3	43	00	00	c8	.oBEff.C
0030	41																
-	Sent	ri	ght	aft	ter	ena	bli	ing	the	e Hl	۹D ۱	vit	n 02	2 01	L		
-	0x00	0003	3e8	= 1	L000) (u	s k	oetv	veer	n a	cce	ler	omet	ter	rea	adin	gs, or 1000Hz?)
-	0x42	0312	26f	= 3	32.7	68	(gy	/ro	sca	ale)						
-	0x45	8000	900	= 4	1096	.0	(ad	cel	ls	cale	e)						
		- 0>	x43a	a360	666	= 3	26.	8 ((ter	npe	rati	ıre	sca	ale)		
-	0x41	c80(900	= 2	25.0	(t	emp	bera	atu	re	offs	set))				

Simple tests

- Replay earliest HID packets
 - This is when it's useful to know which packets might modify firmware
- Omit or reorder packets, see what happens
- Try modifying values in the packets
- Pay attention to inter-packet timing or repetitions
 - Maybe something is polled until a completion value
 - Some operations take time

Rift S Radio Report

FossXR 2022

Questions:

- Jan Schmidt <jan@centricular.com>
- @thaytan

