
🍷 Wine on macOS 💻
State of the Union

Brendan Shanks
WineConf 2022

Removal of 32-bit support on
macOS

2018 - macOS 10.14 Mojave2017 - macOS 10.13 High Sierra

• Wine runs 32-bit (x86) Windows EXEs inside a 32-bit Unix process,
and 64-bit (x86_64) EXEs inside a 64-bit Unix process

• 32-bit Windows software still extremely common

In 2019, macOS (10.15 Catalina) will no longer run 32-bit processes

🚨This is a problem!🚨

How to run 32-bit code?

• Early experimentation and prototyping done using
Hypervisor.framework

• Apple added support to macOS 10.15 for 64-bit processes to
create 32-bit code segments

• Linux has similar support also

Wine’s DLLs
• At the time (Wine 4.x), Wine made up of Winelib DLLs: built as ELF/

Mach-O dylibs, implementing Windows APIs, able to call either
Windows or Unix APIs

• Windows code uses 32-bit pointers, calling conventions, struct
packing, but Unix is 64-bit. Big mismatch!

wine64

test.exe
(32-bit)

gdi32.dll.so

ntdll.dll.so
GetFontFileData

libfreetype.dylib

The “hybrid” compiler
• Fork of Clang 8, implements special 32-on-64 mode:

• Pointers have an address space, either 32- or 64-bit

• Variables, functions also have an address space

• Address space is inferred based on header files

• anything from system headers is 64-bit

• Wine headers had pragma added to mark as 32-bit

The “hybrid” compiler
• Processor must be in 64-bit mode

• For every function using newly-added 32-bit-compatible calling
conventions, compiler generates thunks (wine_thunk_function):

• far call from 32- to 64-bit mode

• call the function

• far return back to 32-bit mode and the original caller

BOOL WINAPI GetFontFileData(DWORD instance_id, DWORD unknown, UINT64 offset, void *buff, DWORD buff_size)
{
…
 pFT_Load_Sfnt_Table(ft_face, table, offset, buff, &len);
…
}

__attribute__((stdcall32) 32-bit pointer

#ifdef __i386_on_x86_64__
#pragma clang default_addr_space(push, default)
#pragma clang storage_addr_space(push, default)
#endif

static void *ft_handle = NULL; // returned from dlopen()

FT_Error (*pFT_Load_Sfnt_Table)(FT_Face face, FT_ULong tag, FT_Long offset, FT_Byte* buffer, FT_ULong* length);

#ifdef __i386_on_x86_64__
#pragma clang default_addr_space(pop)
#pragma clang storage_addr_space(pop)
#endif

cast to 64-bit pointer

If pointer sizes didn’t match, compiler throws an error:

wine/dlls/gdi32/freetype.c:1929:19: error: assigning 'void *' to '__storage32 void
*__storage32' changes address space of pointer

 ft_handle = dlopen(SONAME_LIBFREETYPE, RTLD_NOW);
 ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• In practice, worked very well, but still many special cases requiring
changes in Wine:

• Want to pass data coming from Unix library to a Windows
function: had to make temporary copy

• glMapBuffer: used mach_vm_remap to remap to below 4GB

• XAudio passes complex structs straight to Unix FAudio: had to
marshal structs

The “hybrid” compiler

The “hybrid” compiler

• Shipped CrossOver 19 (Wine 4.12) in December 2019 🎉

• Continued to use same compiler with minimal changes for
CrossOver 20 (Wine 5.0), 21 (6.0), 22 (Wine 7.7)

• Wine changes resulted in massive diff vs. upstream, not merged
upstream

• Clang changes also not upstream

The upstream solution:
PE Separation

• Build as much of Wine as possible as PE DLLs, without direct access to Unix APIs

• For Unix API access, use a separate Unix lib without direct access to (non-ntdll) Windows APIs

• Creates a hard boundary between PE DLLs and Unix .so/dylibs

• Allows for PE DLL to be 32-bit and Unix dylib to be 64-bit, with thunks in-between to marshal
parameters and structs

test.exe (32-bit)

ntdll.dll
(32-bit)

ntdll.so
(64-bit ELF/

Mach-O)

wine64

The upstream solution: Wow64

• With PE separation, becomes possible to use approach similar to
Windows-on-Windows-64 (Wow64) architecture used on Windows
for running 32-bit EXEs

• Exists in upstream Wine, partially functional today!

• CrossOver 22 (Wine 7.7) uses both Wow64 and hybrid compiler

• hybrid compiler only used for 3 DLLs

Apple announces the Mac’s transition to ARM64/
“Apple Silicon”

June 2020

Rosetta 2
• macOS included “Rosetta 2”, a translator/emulator for running existing (64-

bit) Intel Mac applications

• Rosetta 2 also supports the 32-bit code segments!

• Also works at command-line, and macOS includes all binaries as “fat” arm64
and x86_64 binaries

• Building Wine currently must be done from an emulated command-line

🍷 Wine on Rosetta 2
• Wine needed minimal changes for Rosetta 2:

• GPU detection in the Mac driver assumed all GPUs were PCI devices

• Started building Wine with -mfpmath=sse to avoid x87 FPU

• Some preloader changes needed to shift Rosetta’s memory
allocations

• SMBIOS table needed to be generated for
GetSystemFirmwareTable()

Rosetta 2 Limitations
• x87 floating point performance currently quite slow, exceptions not

implemented

• No AVX support

• Not able to detect cross-process code modification through mach_vm_write

• Cannot retrieve x86 register state cross-process through Mach calls

• x86 debug registers not really implemented

• Translation is opaque: no logging/debugging for Rosetta itself

🐜🕷Rosetta 2 Bugs 🪲🦟
• Rosetta team has been very responsive, many bugs fixed in last 2

years

• Finding and identifying bugs can be a challenge!

• movw from segment selector to memory would write 32 bits instead
of 16, possibly overwriting data

• Race conditions between SIGUSR1 delivery and modifying
segment selectors (popl %ds, ljmpq)

• Overall, Rosetta works very well

• Excellent performance

• Even with translated CPU, game performance often better on Apple
Silicon than on Intel Macs w/integrated graphics

The Future

PE Separation
• 32-bit Windows apps will be able to use Vulkan (especially

important for wined3d/DXVK to use MoltenVK)

• Ability to swap %gs register when entering/leaving Windows code

%gs conflict

• Both x86_64 macOS and Windows point %gs to important thread-
specific data (macOS TSD, Windows TEB)

• Without a hard boundary between Unix and Windows code, they
had to share same %gs (the macOS one)

• Apple reserved %gs:30h (Self) and %gs:58h (ThreadLocalStorage),
allows most Windows apps to work

• %gs:60h (ProcessEnvironmentBlock)

• accessed by apps linked against most versions of the Win10 SDK. Fixed in W11 SDK

• CrossOver has a hack to make this work

• %gs:8h (StackBase)

• accessed by Chromium before v87 (when I landed a fix)

• CrossOver has some load-time binary patches for CEF (Rockstar Launcher, beamNG)

• %gs:20h (FiberData)

• some games access this, no solution currently

• Hoping that once PE separation is complete, %gs can be swapped when entering/leaving
Windows code

ARM64 Wine
• Some basic work done on this in 2020, but

not much attention since

• Apple enforces PAGEZERO >= 4GB,
prevents USER_SHARED_DATA from being
mapped at natural place (0x7FFE0000)

• 16KB page size

• x18 register (used for TEB) is reserved

• Likely useful more for Wow64 than for
native ARM64 software

Questions?

