
1

Post OpenGL

Casual graphics development

Erik Faye-Lund

XDC 2022

3

OpenGL vs Vulkan

4

OpenGL is fairly easy
$ cat minimal-opengl-example.c

#include <GL/glut.h>

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_TRIANGLES);

 glColor3f(1, 0, 0);

 glVertex3f(-1, -0.75, 0);

 glColor3f(0, 1, 0);

 glVertex3f(0, 0.75, 0);

 glColor3f(0, 0, 1);

 glVertex3f(1, -0.75, 0);
● glEnd();

 glutSwapBuffers();

}

int main(int argc, char **argv)

{

 glutInit(&argc, argv);

 glutCreateWindow("Hello, world!");

 glutDisplayFunc(display);

 glutMainLoop();

 return 0;

}

$ wc -l minimal-opengl-example.c

22 minimal-opengl-example.c

5

Vulkan... not so much

…I'm not even going to show any code here, because it'll be

pointless.

$ wc -l minimal-vulkan-example.c

546234 minimal-vulkan-example.c

...ok, maybe not that bad, more realistically around 1000

lines of code.

6

OpenGL vs Vulkan
OpenGL

● Easy to get started 😄

● Relatively easy to get right 😄

● Strong ecosystem 😄

● Straight-forward-ish API 😄

● No need to worry about barriers 😄

● Doesn't expose modern features ☹

Vulkan
● Hard to get started ☹

● Difficult to get right ☹

● Ecosystem still has a long way to go ☹

● Feels like filling out custom-forms ☹

● Manual barrier placement is tedious ☹

● Has all the new GPU features! 😄

7

How can we bring back the FUN?

8

Some alternatives
● Use pre-existing middleware

● Create new, hopefully better middleware

● Expose new features in OpenGL using Zink

9

Existing middleware: bgfx
Pros:

● Provides both C and C++ API

● Actively maintained

Cons:

● More of a graphics API

abstraction

10

Existing middleware: V-EZ
Pros:

● Targets Vulkan directly

● Deals with annoying things

like barrier placement

Cons:

● Practically speaking

abandoned

● C++ API

11

Create something new?
Here's what's needed to make things less tedious:

● Higher level abstractions to create pipelines, render-targets,

textures, command buffers, etc

● Helpers for “automatic” barrier placement

● Automatic / easy memory allocations

● Fixed function shaders!

● Things like vertex streamer helpers

12

Add new features to OpenGL with Zink
● Leverages the existing ecosystem

● Probably needs to link entire GL stack into the application

● Requires creating extensions that the rest of the community

doesn't want or need? ☹
– Would probably be highly Zink-specific...

13

Thouhgts? Let’s discuss!

14

Thank you!

15

We are hiring
col.la/careers

http://col.la/careers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

