
An Introduction to DisplayPort MST

Lyude Paul



 2

Who am I?

● Software engineer at Red Hat
● Primarily work on graphics drivers, also have experience with 

input and a number of other areas
● Also a resident MST expert :)



 3

What is DisplayPort MST?

● A protocol for DisplayPort 
allowing the daisy-chaining of 
multiple displays on a single link

● Very common in laptop docks, 
some monitors use it for daisy-
chaining

● Supported as of DisplayPort 1.2
● Supported in amdgpu, nouveau, 

and i915



 4

Why make a presentation on this?

● There’s been a lot of reorganization of DP MST code to rely 
much more heavily on the atomic state

● Making people aware of the helpers
● Sometimes DP MST be quite rude, and is probably one of the 

top causes of display issues



 5

How does it work?

● Devices which provide ports on a 
topology are known as branches, and 
connectors are referred to as ports

● Ports on a branch share bandwidth
● Each active DP stream is referred to as a 

virtual channel, or VC
● Timeslots represent slices of the available 

bandwidth on a branch’s immediate ports
● 63 or 64 Timeslots (8B/10B encoding)
● Each VC’s PBN (payload bandwidth 

number) is rounded up to the closest 
equivalent in TUs

Source

Branch #1

Port #1 Port #2 Port #3

Branch #2



 6

How does it work (cont.)

● Topologies can have multiple 
nested branches

● TUs are only for top branch 
though

● To deal with this, each port has 
a max PBN

● The source is expected to 
ensure the resulting PBN 
requirement for a payload on 
said port never exceeds this

Branch #1

Branch #2

Port #1.1 @ 5.4Gbit/s

Sink

Port #1.1.1 @ 8.1Gbit/s (limited to 5.4GBit/s)

Source

Port #1 @ 8.1Gbit/s



 7

Allocation/de-allocation

● Payload allocations are always 
contiguous, e.g. no holes

● Source specifies starting time slot 
and time slots/pbn allocated

● The sink/branch is expected to move 
payloads around automatically to fill 
any holes that appear as the result 
of releasing a payload

● Source is expected to keep track of 
this without reading back the 
payload table

VC 1 
5 TU

VC 2 
5 TU

VC 3 
5 TU

Empty 
49 TU

VC 1 
5 TU

Em
pty

VC 3 
5 TU

Empty 
49 TU

VC 1 
5 TU

VC 3 
5 TU

Empty 
54 TU



 8

Communication

● Basic communication happens via “sideband” communications
● Provides interface over DPCD similar to i2c over AUX, but is message 

oriented instead of register oriented
● Messages can be broadcast, or targeted at a specific RAD (relative address)

– Each branch reads the RAD and routes it to the next closest branch on the path
– It’s basically just a game of telephone

● Raw DPCD accesses on branches can be done via 
REMOTE_DPCD_READ/WRITE commands

● Otherwise, low level DPCD accesses between branches are handled by the 
branches themselves



 9

Communication (cont.)

● Hotplugs, HDCP notifications and others are also received via 
sideband messages we receive from branches

● Interrupts are provided for these messages using short HPD 
IRQs



 10

Troubleshooting

● Every branch has firmware running, and it very often breaks
● Number of reasons for this happening:

– Parts of the MST spec have been implemented incorrectly on sinks, 
for example: interleaved sideband messaging

– Many times these failures are not explicit and don’t provide us with 
error codes. For example, interleaved sideband messaging will partly 
work on many hubs but will still result in spontaneous timeouts

– Sometimes things don’t even break cleanly, they just take way 
longer then they should!



 11

Troubleshooting tips

● Even as problematic as MST hubs are, usually we’re the culprit
● Or the cable. Good lord, the cables.

– I’m serious here. This causes SO many weird problems
– 2 cables is not enough, 3 is OK

● Do not be like me and assume “oh, second cable is broken too so it can’t be 
that”. You’ll regret it a week later.

– Or just use USB-C, which does not have this problem
● Read the spec at least 10 million times because specs are hard 

and reading them is hard and we probably misread something



 12

Troubleshooting

● Timeouts are usually:
– The driver needing to be more async (e.g. handling sideband tx + rx 

simultaneously)
– A not-fatal error occurring somewhere down the topology (for 

instance, a lower level branch failing link training somehow)
– Just delay from having too many nested branch devices



 13

State of affairs

● DRM has a set of MST related helpers for handling most of the 
hard stuff:
– Topology probing
– Sideband messaging
– Bandwidth limitations
– Etc.



 14

State of affairs

● Certain features still missing:
– DSC support – some helpers written, but we need more atomic state 

helpers for determining optimal DSC settings
– Most of the DSC helpers can be pulled out of amdgpu code
– Helpers for fallback retraining/bpp optimization
– More comprehensive error handling
– Testing testing testing

● We have no tests
– Please save us chamelium…

– (we could probably write unit tests though)



 15

Special thanks

● Wayne Lin for their work on DSC support, bug fixing and 
helping out with reviewing my work!

● VESA for being incredibly cool and helpful!
– (X.org members can request access to VESA specs)
– Everyone, say “Thanks VESA”
– Also say “Thanks Bill”


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

