
World’s slowest raytracer
Bas Nieuwenhuizen, XDC 2022

Ray Tracing, what is it?

How does one trace a ray?

● Checking all triangles is slow

● Bounding Volume Hierarchies
○ Of course there is a tree structure
○ Every node has a bounding box

Tracing Rays

Hardware RT acceleration on RDNA 2
uvec4 image_bvh_intersect_ray(uvec4 descriptor,
 uint64_t node_pointer,
 float extent,
 vec3 origin,
 vec3 direction,
 vec3 inv_direction);

Returns:
● Internal node: id of intersecting children or -1
● Triangle node: distance and barycentric coordinates of intersection

BVH nodes on RDNA 2

Triangle node (64 bytes)

 vec3 vertices[5];
 uint flags;

● Allows up to 4 triangles using pointer
tags

Internal fp32 node (128 bytes)

 uint child_id[4];
 struct {
 vec3 min;
 vec3 max;
 } child_bound[4];

Internal fp16 node (64 bytes)

 Above with fp16 bounds

How to trace a ray on RDNA2?

● Using shader code!
● Depth First Search

Occupancy woes

● You typically need a stack for DFS
● Backtracking means more box node intersections

Options for stack:

● VRAM
● LDS (shared memory)

Short stack + backtracking

● 16 entry stack in LDS
● Backtrack if stack is empty

○ Less than 1% of iterations has a lane that is backtracking.

Bonus: No depth limits on BVH

Support on older GPUs

● Implement the single instruction in software
● Works for all supported GPUs

Building a BVH

Naive BVH Construction

API order:

Internal pass 1

Internal pass 2

Internal pass 3

CTS Fails

● This is very dependent on triangle order
● CTS had a test that hits worst-case

Idea: Sort triangles first

● E.g. on center of bounding box.

Morton Codes

● X: x6x5x4x3x2x1x0
● Y: y6y5y4y3y2y1y0
● Z: z6z5z4z3z2z1z0

->

z6y6x6z5y5x5z4y4x4z3y3x3z2y2x2z1y1x1z0y0x0

Going further

Still significantly worse than what is possible.

Further experiments:

● Top-down build using SAH with binning
● Parallel Locally-Ordered Clustering

Giving similar results.

Other BVH builders

● Intel GRL code
○ Heavily dependent on cmdbuffer gymnastics that we can’t do ..

● Gpurt (RT implementation of AMDVLK)
○ Written in HLSL
○ Glslang support for HLSL is incomplete/broken
○ DXC was considered not an appropriate dependency

Walked into the NIH trap pretty easily …

RT Pipelines

How to trace rays: the easy way

Ray Queries

rayQueryEXT rayQuery;
rayQueryInitializeEXT(rayQuery, topLevelAS, gl_RayFlagsTerminateOnFirstHitEXT,
 mask, origin, tmin, direction, tmax);

while (rayQueryProceedEXT(rayQuery)) {
 // process current intersection for e.g. opaqueness
}

if (rayQueryGetIntersectionTypeEXT(rayQuery, true) ==
 gl_RayQueryCommittedIntersectionTriangleEXT) {
 // hit a triangle
}

How to trace rays: the complicated way

● Ray Tracing pipelines
○ Callback based
○ Every callback is a new shader stage
○ Many shaders of the same stage possible with a binding table.
○ Callbacks can trace more rays (recursion)

Raygen traceRay

Binding Table
Closest hit

shader

Implementation

● Lower the shader to continuation passing style:
○ Shader ends after traceRay
○ Have a new resume shader for after the traceRay finishes

● Give each shader a unique id

void main() {
 // pre-trace stuff
 traceRay(...);
 // post-trace stuff
}

void main() {
 // pre-trace stuff
 // push all the variables to scratch stack
 // push resume shader id to scratch stack
 next_shader_id = TRACE_RAYS_SHADER_ID;
}

void main() {
 // pop everything from stack
 // post-trace stuff
 next_shader_id = /* value from top of stack */
}

Implementation 2

● Tie all this together with a big loop and switch

void main() {
 uint next_shader_id= raygen_binding_table[0];
 while (next_shader_id != 0) {
 switch(next_shader_id) {
 …
 }
 }
}

Not Meeting Expectations

● Pipeline libraries come with expectations
● Recompiling everything every time does not meet those expectations

uniform_next_shader_addr =
get_first_active_lane(next_shader_addr);
// indirect branch to uniform_next_shader_addr

● Allows for separate compilation
● But needs ACO changes

Current Status

Using Raytracing in RADV

Ray Queries: Enabled by default

Ray Tracing Pipelines: Use RADV_PERFTEST=rt

● Main blocker: separate compilation of shaders

Games

Working RT Effects:

● Quake 2 RTX
● Control
● Deathloop
● Resident Evil Village
● Metro Exodus: Extended Edition

Performance

Radeon Rays Analyzer

New Contributors

● Konstantin Seurer
● Friedrich Vock

Made some great contributions for raytracing

Next Steps

Next Steps: Features

● Separate shader compilation
○ Enable ray tracing by default

● Indirect BVH builds
○ Needed for DXR 1.1

Next steps: Performance

● Land better BVH building algorithms
● Use multiple triangles per node & fp16 box nodes
● Microoptimize the hell out of the traversal loop
● Optimizations for the main loop: tail calls etc.

