
1

How to write a Vulkan driver in 2022

Faith Ekstrand
XDC 2022

2

About me
● Jason Ekstrand (jekstrand)

● First freedesktop.org commit: wayland/31511d0e, Jan 11, 2013

● Worked at Intel from June 2014 to December 2022
– NIR, Intel (ANV) Vulkan driver, SPIR-V NIR, ISL, other Intel bits→

● Started at Collabora in January 2022
– Work across the upstream Linux graphics stack, wherever needed

– So far, mostly focused on Vulkan runtime code

3

History of Vulkan in Mesa

4

History of Vulkan in Mesa
● Intel (ANV) Vulkan driver merged on April 15, 2016

– Refactored Intel OpenGL driver code for sharing w/ Vulkan
● Moved into a new src/intel folder

– Added a new SPIR-V front-end for NIR

● RADV was merged on October 7, 2016
– Started as a copy+paste from ANV

● Other vulkan drivers either derive from ANV or RADV

5

History of Vulkan runtime in Mesa
● First significant common code was WSI

– Shared between ANV and RADV

● Common base object for VK_EXT_private_data, May 2020

● Common entrypoint table generator, February 2021

● Common render pass implementation, March 2022

● Common graphics state tracking, July 2022

● Common Vulkan meta (copy/blit/clear), Coming soon!

6

Writing a Vulkan driver in 2022

7

Directory structure
src/<hardware>/:
 |- meson.build
 |- compiler
 | |- meson.build
 | | ...
 |- vulkan:
 | |- meson.build
 | |- drv_private.h
 | |- drv_device.c
 | | ...
 | ...

8

● Every Vulkan object should derive from vk_object_base

● You can also derive from one of the other vk_foo base structs
– vk_device, vk_image, vk_queue, etc.

● Use VK_DEFINE_HANDLE_CASTS() to declare handle cast helpers

● VK_EXT_private_data is implemented for you

Common base objects

9

Common dispatch framework
● Driver implementations of core objects derive from vk_foo

– vk_instance, vk_physical_device, vk_device

● Everything else drives from vk_base_object or other vk_foo

● Use vk_entrypoints_gen.py to generate driver-prefixed tables

● vkGet*ProcAddr() are implemented in common code:
– vk_instance_get_proc_addr()

– vk_common_GetDeviceProcAddr()

10

Common vkFoo2() wrappers
● If both vkFoo() and vkFoo2() exist, only implement vkFoo2()

● Common code implements vkFoo() in terms of vkFoo2()

11

12

Common vkFoo2() wrappers
● If both vkFoo() and vkFoo2() exist, only implement vkFoo2()

● Common code implements vkFoo() in terms of vkFoo2()

● You don’t need implement VK_EXT_foo2 first
– The framework doesn’t care if the extension is enabled or even supported

● This includes VK_KHR_synchronization2!

13

Logging
● Common logging helpers

● Take a list of objects or instance as the first parameter

● Reports log messages via
– stderr

– VK_KHR_debug_utils

– VK_EXT_debug_report

14

Error reporting
● Generic error reporting

– return vk_errorf(obj, VK_ERROR_FOO, “Message: %u”, i)

● Command buffer error recording
– return vk_command_buffer_set_error(&cmd_buffer→vk, VK_ERROR_FOO)

● Device loss reporting
– return vk_device_set_lost(device, “Lost device message: %u”, i)
– return vk_queue_set_lost(queue, “Lost queue message: %u”, i)

15

● Do not implement VkFence or VkSemaphore directly
– Especially not timeline semaphores!

● Single common vk_sync primitive
– Supports binary and timeline

– Supports GPU and CPU waits

– Supports various import/export

● VkFence or VkSemaphore implemented in terms of vk_sync

Synchronization and queue submit

16

Synchronization and queue submit
● Common synchronization requires common queue submit

● Driver implements vk_queue::driver_submit

● Automatically spawns a thread when needed
– To handle cross process submit re-ordering for timeline semaphores

– To handle CPU work in userspace which needs to block
● Be careful here! This is incompatible with sync file export

● Also handles vkDevice/QueueWaitIdle()

17

Render passes
● Render passes are now optional for drivers which

– Support VK_KHR_dynamic_rendering

– Support the VkRenderingAttachmentInitialLayoutMESA pseudo-extension struct

– Lower input attachments via nir_lower_input_attachments()

– Support VK_EXT_attachment_feedback_loop_layout

● Implement vkCmdBegin/EndRendering() and the rest is magic!

● Drivers can still implement render passes directly

18

Graphics state tracking
● The new vk_graphics_pipeline_state struct tracks all state that

can be embedded in a graphics pipeline
– Automatically handles possibly-garbage pointers

● Everything is either NULL or valid

– Handles pipeline libraries state accumulation

– Avoids chasing pointers for dynamic-only state

19

Graphics state tracking
● The new vk_dynamic_graphics_state tracks all dynamic 3D state

● Helpers are provided for
– Populating from a vk_graphics_pipeline_state

– Copying to another vk_dynamic_graphics_state

– Dirty tracking of dynamic state

● All vkCmdSet*() are implemented in common code

20

Meta ops (copy/blit via shaders)
● The goal is to provide helpers for all transfer ops

– Clears (render pass, image, and attachment)

– Blits and resolves

– Copies (image, buffer, buffer image, buffer fill)↔

● Pipelines and persistent objects created once and cached

● Transient objects (image views, etc.) tracked by the command buffer

● Drivers are responsible for state save/restore

21

Meta ops (copy/blit via shaders)
● Current status:

– Clears: (may need some re-shuffling long-term)✅

– Blits: ✅

– Resolves: (probably next, NVK needs them)❌

– Copies: ❌

● Currently tested in NVK, scheming with Alyssa to convert panvk

● Hopefully the framework will also work for driver custom meta

22

So, I did write a Vulkan driver in
2022...

23

24

What is NVK?
● Brand new Vulkan driver for NVIDIA hardware

– 100% from scratch (very little copy+paste from nouveau)

– Uses the newly released official NVIDIA headers

● Written by Jason Ekstrand, Karol Herbst, and Dave Airlie

● Intended to be the new “reference” driver in Mesa
– Clean well-organized code-base

– Takes full advantage of runtime code

25

Status of NVK
● Currently supports Turing+

– Karol has partial enabling patches for Kelper+, final HW support TBD

● Needs a new kernel uAPI which doesn’t exist yet
– This is going to mean major nouveau.ko surgery

– Merging to mesa/main blocking on kernel uAPI

● Current CTS pass rate:
– Pass: 193734, Fail: 1064, Crash: 1286, Warn: 4, Skip: 1364208, Flake: 265

26

How to test/contribute
● Currently lives in the nvk/main branch in nouveau/mesa

– https://gitlab.freedesktop.org/nouveau/mesa

● Feel free to submit MRs!
– https://gitlab.freedesktop.org/nouveau/mesa/-/merge_requests

● Please be kind with the issue tracker
– No features requests yet, we know there’s a lot missing

– No game bugs yet, there are a lot of missing features

https://gitlab.freedesktop.org/nouveau/mesa
https://gitlab.freedesktop.org/nouveau/mesa/-/merge_requests

27

More details coming in a blog post

https://www.collabora.com/news-and-blog/
 🐦@Collabora
 🐦@jekstrand_

https://www.collabora.com/news-and-blog/

28

Thank you!

29

We are hiring
col.la/careers

http://col.la/careers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

