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About me
● Jason Ekstrand (jekstrand)

● First freedesktop.org commit: wayland/31511d0e, Jan 11, 2013

● Worked at Intel from June 2014 to December 2022
– NIR, Intel (ANV) Vulkan driver, SPIR-V  NIR, ISL, other Intel bits→

● Started at Collabora in January 2022
– Work across the upstream Linux graphics stack, wherever needed

– So far, mostly focused on Vulkan runtime code
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History of Vulkan in Mesa
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History of Vulkan in Mesa
● Intel (ANV) Vulkan driver merged on April 15, 2016

– Refactored Intel OpenGL driver code for sharing w/ Vulkan
● Moved into a new src/intel folder

– Added a new SPIR-V front-end for NIR

● RADV was merged on October 7, 2016
– Started as a copy+paste from ANV

● Other vulkan drivers either derive from ANV or RADV
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History of Vulkan runtime in Mesa
● First significant common code was WSI

– Shared between ANV and RADV

● Common base object for VK_EXT_private_data, May 2020

● Common entrypoint table generator, February 2021

● Common render pass implementation, March 2022

● Common graphics state tracking, July 2022

● Common Vulkan meta (copy/blit/clear), Coming soon!
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Writing a Vulkan driver in 2022
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Directory structure
src/<hardware>/:
 |- meson.build
 |- compiler
 |   |- meson.build
 |   |  ...
 |- vulkan:
 |   |- meson.build
 |   |- drv_private.h
 |   |- drv_device.c
 |   |  ...
 |  ...
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● Every Vulkan object should derive from vk_object_base

● You can also derive from one of the other vk_foo base structs
– vk_device, vk_image, vk_queue, etc.

● Use VK_DEFINE_HANDLE_CASTS() to declare handle cast helpers

● VK_EXT_private_data is implemented for you

Common base objects
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Common dispatch framework
● Driver implementations of core objects derive from vk_foo

– vk_instance, vk_physical_device, vk_device

● Everything else drives from vk_base_object or other vk_foo

● Use vk_entrypoints_gen.py to generate driver-prefixed tables

● vkGet*ProcAddr() are implemented in common code:
– vk_instance_get_proc_addr()

– vk_common_GetDeviceProcAddr()
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Common vkFoo2() wrappers
● If both vkFoo() and vkFoo2() exist, only implement vkFoo2()

● Common code implements vkFoo() in terms of vkFoo2()
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Common vkFoo2() wrappers
● If both vkFoo() and vkFoo2() exist, only implement vkFoo2()

● Common code implements vkFoo() in terms of vkFoo2()

● You don’t need implement VK_EXT_foo2 first
– The framework doesn’t care if the extension is enabled or even supported

● This includes VK_KHR_synchronization2!
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Logging
● Common logging helpers

● Take a list of objects or instance as the first parameter

● Reports log messages via
– stderr

– VK_KHR_debug_utils

– VK_EXT_debug_report
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Error reporting
● Generic error reporting

– return vk_errorf(obj, VK_ERROR_FOO, “Message: %u”, i)

● Command buffer error recording
– return vk_command_buffer_set_error(&cmd_buffer→vk, VK_ERROR_FOO)

● Device loss reporting
– return vk_device_set_lost(device, “Lost device message: %u”, i)
– return vk_queue_set_lost(queue, “Lost queue message: %u”, i)
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● Do not implement VkFence or VkSemaphore directly
– Especially not timeline semaphores!

● Single common vk_sync primitive
– Supports binary and timeline

– Supports GPU and CPU waits

– Supports various import/export

● VkFence or VkSemaphore implemented in terms of vk_sync

Synchronization and queue submit
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Synchronization and queue submit
● Common synchronization requires common queue submit

● Driver implements vk_queue::driver_submit

● Automatically spawns a thread when needed
– To handle cross process submit re-ordering for timeline semaphores

– To handle CPU work in userspace which needs to block
● Be careful here! This is incompatible with sync file export

● Also handles vkDevice/QueueWaitIdle()
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Render passes
● Render passes are now optional for drivers which

– Support VK_KHR_dynamic_rendering

– Support the VkRenderingAttachmentInitialLayoutMESA pseudo-extension struct

– Lower input attachments via nir_lower_input_attachments()

– Support VK_EXT_attachment_feedback_loop_layout

● Implement vkCmdBegin/EndRendering() and the rest is magic!

● Drivers can still implement render passes directly
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Graphics state tracking
● The new vk_graphics_pipeline_state struct tracks all state that 

can be embedded in a graphics pipeline
– Automatically handles possibly-garbage pointers

● Everything is either NULL or valid

– Handles pipeline libraries state accumulation

– Avoids chasing pointers for dynamic-only state
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Graphics state tracking
● The new vk_dynamic_graphics_state tracks all dynamic 3D state

● Helpers are provided for
– Populating from a vk_graphics_pipeline_state

– Copying to another vk_dynamic_graphics_state

– Dirty tracking of dynamic state

● All vkCmdSet*() are implemented in common code
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Meta ops (copy/blit via shaders)
● The goal is to provide helpers for all transfer ops

– Clears (render pass, image, and attachment)

– Blits and resolves

– Copies (image, buffer, buffer  image, buffer fill)↔

● Pipelines and persistent objects created once and cached

● Transient objects (image views, etc.) tracked by the command buffer

● Drivers are responsible for state save/restore
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Meta ops (copy/blit via shaders)
● Current status:

– Clears:  (may need some re-shuffling long-term)✅

– Blits: ✅

– Resolves:  (probably next, NVK needs them)❌

– Copies: ❌

● Currently tested in NVK, scheming with Alyssa to convert panvk

● Hopefully the framework will also work for driver custom meta
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So, I did write a Vulkan driver in 
2022...
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What is NVK?
● Brand new Vulkan driver for NVIDIA hardware

– 100% from scratch (very little copy+paste from nouveau)

– Uses the newly released official NVIDIA headers

● Written by Jason Ekstrand, Karol Herbst, and Dave Airlie

● Intended to be the new “reference” driver in Mesa
– Clean well-organized code-base

– Takes full advantage of runtime code
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Status of NVK
● Currently supports Turing+

– Karol has partial enabling patches for Kelper+, final HW support TBD

● Needs a new kernel uAPI which doesn’t exist yet
– This is going to mean major nouveau.ko surgery

– Merging to mesa/main blocking on kernel uAPI

● Current CTS pass rate:
– Pass: 193734, Fail: 1064, Crash: 1286, Warn: 4, Skip: 1364208, Flake: 265
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How to test/contribute
● Currently lives in the nvk/main branch in nouveau/mesa

– https://gitlab.freedesktop.org/nouveau/mesa

● Feel free to submit MRs!
– https://gitlab.freedesktop.org/nouveau/mesa/-/merge_requests

● Please be kind with the issue tracker
– No features requests yet, we know there’s a lot missing

– No game bugs yet, there are a lot of missing features

https://gitlab.freedesktop.org/nouveau/mesa
https://gitlab.freedesktop.org/nouveau/mesa/-/merge_requests
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More details coming in a blog post

https://www.collabora.com/news-and-blog/
 🐦@Collabora
 🐦@jekstrand_

https://www.collabora.com/news-and-blog/
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Thank you!
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We are hiring
col.la/careers

http://col.la/careers
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