
Fast gfx in a vm with this one little trick!

Virtgpu DRM Native Contexts

Rob Clark
XDC2022

Classes of GPU Virtualization

● Device Emulation
● API Remoting
● Fixed Passthrough
● Mediated Passthrough

Classes of GPU Virtualization

● Device Emulation
○ Are you kidding?

● API Remoting
● Fixed Passthrough
● Mediated Passthrough

Classes of GPU Virtualization

● Device Emulation
● API Remoting

○ Ie, virgl, gfxstream, venus
○ 12-86% of native
○ Isolation?

● Fixed Passthrough
● Mediated Passthrough

Classes of GPU Virtualization

● Device Emulation
● API Remoting
● Fixed Passthrough

○ Ie. PCI passthrough
○ Near native perf
○ Not useful if host and other VMs also need same GPU

● Mediated Passthrough

Classes of GPU Virtualization

● Device Emulation
● API Remoting
● Fixed Passthrough
● Mediated Passthrough

○ Great… if your hw supports it
○ Fence/buffer integration with host?

About virtgpu

● Aka virtio_gpu aka drm/virtio
○ Upstream virtio based guest kernel

vgpu driver
● Host/guest interop
● Recent(ish) additions

○ Blob resources
○ Context Type
○ Ring-idx

Guest Userspace

Guest
kernel

Mesa

virgl venus

drm/virtio

Host Userspace (VMM)

Host
kernel

virglrenderer
vrend vkr

gl vk

drm/$driver

DRM Native Context!

● Native usermode driver in guest!
● API remoting at kernel uabi layer

○ Level of least frequent calls
○ And least frequent change
○ Make it more async!

● Hooks in at src/freedreno/drm
○ Basically equiv of winsys layer

● Integrates with virtgpu’s buffer/fence passing
● Not much code

○ < 2kloc guest userspace
○ ~ 1.3kloc in virglrenderer

Guest Userspace

Guest
kernel

Mesa
freedreno

drm/virtio

Host Userspace (VMM)

Host
kernel

virglrenderer

msm_renderer

drm/msm

fd/drm/virtio

Virtgpu DRM Native Context: Structure

● Device fd’s (virglrenderer):
○ 1 device fd (struct drm_file *) per guest process
○ Guest drm_file 1:1 with host virglrenderer context
○ Virglrenderer context 1:1 with host drm_file
○ GPU address spaces are 1:1 with drm_file
○ One GPU address space per guest process

● GEM:
○ 1:1 between host and guest (plus shmem buffer)
○ All host-storage blob’s (VIRTGPU_RESOURCE_CREATE_BLOB)

Virtgpu DRM Native Context: Fences/Sync

● ring_idx == 0: The CPU timeline
○ Used in cases where guest needs to wait for host CPU

● ring_idx > 0: Maps 1:1 to GPU priority levels
○ Which map 1:1 to host dma-fence contexts / timelines

● res_id handles passed to VIRTGPU_EXECBUFFER ioctl
● Synchronization in guest

○ Don’t block in host VMM
○ TODO virtgpu needs proto to pass host fences from guest

Virtgpu DRM Native Context: Protocol

● Guest → Host: VIRTGPU_EXECBUFFER
○ Req messages tunneled over EB
○ Batching for async requests

● Host → Guest: shmem buffer
○ Rsp messages written into shmem rsp_mem buffer at offset guest asks for
○ Keeps the design/implementation of host VMM simple

Virtgpu DRM Native Context: Protocol

● Keep it asynchronous!!
○ To mitigate host ⇔ guest latency, keep hot-paths async

● Host uapi additions to support this
○ Userspace allocated GPU virtual address – GEM create/import can be async
○ Seqno fence # assignment in userspace – GEM submit can be async

● Treat errors as context-lost

Virtgpu DRM Native Context: Protocol

● Keep it asynchronous!! Simple Example:

● Guest allocates 3 buffers (NEW), imports 1 (SET_IOVA)
○ GPU VA passed from guest userspace
○ Guest kernel res_id used instead of host allocated handle in proto

● UPLOAD can avoid mmap into host or immediate mmap
○ Guest mmap requires host to have actually allocated the BO

GEM_NEW GEM_SET_IOVAGEM_NEWGEM_NEW GEM_UPLOAD GEM_SUBMIT

Host

Guest

Alternatives? rendernode fwding?

● Rendernode device exposed in guest
○ Fwd (modern subset) of ioctls to host
○ Use unmodified mesa in guest

● Too synchronous!
○ Ioctls return a value + _IOC_READ
○ Existing uapi designed around low syscall cost
○ Better to embrace the async!

Show me the codez

● Virglrenderer:
○ src/drm/msm/msm_proto.h – the guest ⇔ host protocol
○ src/drm/msm/msm_renderer.c – one .c file, ~1.3kloc
○ src/drm – helper to deal with fences, simple driver loader

● mesa:
○ src/freedreno/drm/virtio

https://gitlab.freedesktop.org/virgl/virglrenderer/-/blob/master/src/drm/msm/msm_proto.h
https://gitlab.freedesktop.org/virgl/virglrenderer/-/blob/master/src/drm/msm/msm_renderer.c
https://gitlab.freedesktop.org/virgl/virglrenderer/-/tree/master/src/drm
https://gitlab.freedesktop.org/mesa/mesa/-/tree/main/src/freedreno/drm/virtio

Adding your driver in three easy steps (1/3)

● Step #1 – add context id and extend capset (drm_hw.h):

struct virgl_renderer_capset_drm {
 uint32_t wire_format_version;
 /* Underlying drm device version: */
 uint32_t version_major;
 uint32_t version_minor;
 uint32_t version_patchlevel;
#define VIRTGPU_DRM_CONTEXT_MSM 1
 uint32_t context_type;
 uint32_t pad;
 union {
 struct {
 uint32_t has_cached_coherent;
 …
 } msm; /* context_type == VIRTGPU_DRM_CONTEXT_MSM */
 } u;
};

https://gitlab.freedesktop.org/virgl/virglrenderer/-/blob/master/src/drm_hw.h

Adding your driver in three easy steps (2/3)
● Step #2 – ???

○ Define and implement your own protocol
○ Then add yourself to the loader table in drm_renderer.c:

static const struct backend {
 uint32_t context_type;
 const char *name;
 int (*probe)(int fd, struct virgl_renderer_capset_drm *capset);
 struct virgl_context *(*create)(int fd);
} backends[] = {
#ifdef ENABLE_DRM_MSM
 {
 .context_type = VIRTGPU_DRM_CONTEXT_MSM,
 .name = "msm",
 .probe = msm_renderer_probe,
 .create = msm_renderer_create,
 },
#endif
};

https://gitlab.freedesktop.org/virgl/virglrenderer/-/blob/master/src/drm/drm_renderer.c

Adding your driver in three easy steps (3/3)
● Step #3 – Profit!

Status / Next Steps

● Possible optimizations:
○ Fencing improvements in virtgpu – pass host fences back to host
○ Reduce host → guest fence latency

● Virtgpu drm_syncobj support
● QEMU support

Thank you

Questions?

