Mesh shading implementation in Mesa
Implementing VK_EXT_mesh_shader in RADV

Timur Kristof

2022

Q XDC
b 2022

Table of Contents

1. Mesh shading recap

2. Mesa mesh shading implementation

3. Demo

1/52

Lo

Mesh shading

The good

New programming model that enables efficient geometry processing for highly detailed scenes.

The bad

May be difficult to integrate and achieve better perf than the traditional pipeline.

The ugly

API is very low-level and vendor-specific tweaks are necessary for optimimum performance.

3/52

Mesh shading programming model

o Compute-like
o Creates vertices and primitives
o Eliminates fixed-function bottlenecks (IA, tess.)

e Very low level

4/52

Mesh shading programming model

o Not (yet?) suitable for tiling GPUs

5/52

Overview of a
mesh shading pipeline

6/52

Mesh shading pipeline (not recommended)

DrawMeshTasksEXT

\Ex, Y, Z)
Mesh shader rasterization
(workgroups) \
Fragment
shader

7/52

Mesh shading pipeline

DrawMeshTasksEXT

\X, Y, Z)

Task shader EmitMeshTasksEXT
XY, 2)

(workgroups)

/

% o
/Oec,'* Mesh shader rasterization

(workgroups) \

Fragment
shader

>

8/52

Mesh shading pipeline

per-meshlet processing

1 dispatch ~ 1 mesh (all meshlets)
1 workgroup ~ group of meshlets
1invocation ~ 1 meshlet (typical)

Task shader

per-vertex/per-primitive processing
<

M 1 dispatch ~ group of meshlets
Mesh shader| | Mesh shader| ... etc. 1 workgroup ~ 1 meshlet
1invocation ~ 1/2 vertices/primitives

9/52

New shader stages

Task shader
How many mesh shader workgroups do you need?
Optional "payload" output.

Mesh shader
Uses a compute-like programming model to feed the
rasterizer directly.

10/52

Typical uses of mesh shading

Meshlets
During asset building, split your geometry into a
smaller cluster of primitives: "meshlets".

Procedural geometry

Generate geometry on the fly according to a mathe-
matical formula without loading any data from mem-
ory.

11/52

What can you do in a task shader?

e Coarse per-meshlet culling
e LOD selection
o Geometry amplification

e Replacement for compute pre-pass

12/52

What else can you do in a mesh shader?

e Per-triangle culling

e Procedural generation of vertices and primitives

13/52

In the beginning... (September 2021)

e« NV _mesh shader (no EXT)
o No test cases (no CTS)
 No users/apps (just an NV sample)

15/52

RADV mesh shading progress

o Oct-Dec 2021:

NV mesh shader mesh-only pipelines + VRS
e Mar-Jun 2022:

Task shaders

o Aug 2022:
EXT mesh shader

16/52

Mesh shaders
HW vs. programming

model

17/52

Where are outputs stored?

e NVidia: shared memory
o Intel: URB memory
o AMD: export space

18/52

AMD "NGG"” HW limitations

e 1 SIMD lane: up to 1 vertex + 1 primitive
e Up to 32K shared memory per workgroup
e 1D workgroup ID, etc.

19/52

AMD "NGG" flow

shader execution
o D
° : H
° :

ivtxO vix1 wvtx2 vtx3 ... vixN
sprm0 prm1 prm2 prm3 .. prmN

rasterizer

20/52

MS programming model requirements

o Any invocation can write any vertex/primitive
e Up to 48K shared memory per workgroup
e 3D workgroup ID, etc.

21/52

MS programming model requirements

workgroup

invo inv1 |nv2 inv3 .. invN

shader execution

.vtxo VX1 VX2 VX3 .. VEXN
:prm0 prm1 prm2 prm3 .. prmM

rasterizer

22/52

We can implement that using LDS (+ VRAM)

rasterizer shader execution

lane 0 lane 1 lane2 lane3 ...

DVEX0 VEXT VX2 vix3 ..
:prm0 prm1 prm2 prm3 ...

23/52

Workgroup size vs. meshlet size

lane 0 lane 1 lane2 lane3 ... laneN

rasterizer exports APl shader
]
T
—
()
wn

24/52

Task shader
implementation

25/52

Task shader requirements

e Dispatch mesh shader workgroups
e Optional payload output up to 16K
o Task/Mesh should run in parallel

26/52

Task shader implementation ideas

e Abuse the tessellator

e Use a compute pre-pass

27/52

Task shader implementation ideas

 Abuse the tessellator (fixed func bottleneck)

 Use a compute pre-pass (extra barrier)

28/52

Task shader implementation ideas

o Abuse the tessellator (Intel, NVidia)
e Use a compute pre-pass
e Do it in firmware (AMD)

29/52

Task + mesh implementation on AMD

Task shaders are graphics shaders, but the HW
needs them to be executed on a different HW queue.

e Mesh shaders: GFX queue (graphics / general)
o Task shaders: ACE queue (async compute)

30/52

Task + mesh implementation on AMD

The difficulty is to pretend to the application that
mesh /task are on the same queue.

31/52

Task + mesh implementation on AMD

DISPATCH
TASKMESH
ACE queue ACE

implicit wait \»‘ implicit wait

DISPATCH
TASKMESH
GFX

GFX queue

32/52

ACE queue
task dispatch X*Y*zZ=2
workgroup 0 workgroup 1

packet
/ end
N
draw ring
o 2
GFX queue 4
mesh dispatch0 mesh dispatch 1
workgroup 0 workgroup 0
workgroup 1 workgroup 1
workgroup N workgroup M

33/52

ACE queue

task dispatch
workgroup 0 workgroup 1

\| J
draw ring

packet

/ end
Y

payload ring

GFX queue
mesh dispatch 0 | mesh dispatch 1 S
workgroup 0 workgroup 0 ‘%
workgroup 1 workgroup 1 S

workgroup N workgroup M

34/52

Synchronizing the two
queues

35/52

ACE+GFX without synchronization

DISPATCH
TASKMESH
ACE

\ implicit wait

DISPATCH
TASKMESH

GFX 36/52

GFX

What happens if you have a barrier?

DISPATCH
TASKMESH
ACE

GEX \ implicit wait

transfer l

DISPATCH
TASKMESH
GFX

JolJlleg

37/52

What happens if you have a barrier?

DISPATCH
TASKMESH
ACE

\i\m plicit wait
GFX

transfer l

DISPATCH
TASKMESH
GFX

JolJlleg

38/52

What happens if you have a barrier?

GFX

DISPATCH
TASKMESH

transfer i l
................ :

>
sync bug DISPATCH
TASKMESH
GFX

39/52

Solving barriers with task shaders

WAIT DISPATCH
REG TASKMESH
MEM ACE

explicit walt |mpl|C|t wait

transfer I l

RELEASE DISPATCH
MEM TASKMESH
GFX

GFX

J191.J1ed

40/52

Multiple processes
with task shaders

41/52

Optimal case with multiple processes

APP1 APP2

GFX R R et

APP1 APP2

42/52

But the kernel doesn't guarantee the ordering...

APP2 APP1

GFX

APP1 APP2

43/52

But the kernel doesn't guarantee the ordering...

APP1
APP2

deadlock

GFX

0
H
"
-
]
]
"
]
"

44/52

But the kernel doesn't guarantee the ordering...

Solution: "gang submit"
o Submit to multiple queues at the same time
e Kernel schedules the jobs together

e No mixup between different apps

45/52

But the kernel doesn't guarantee the ordering...

Solution: "gang submit"
e Not yet available in a released kernel

e Until then, RADV_PERFTEST=ext ms
(implemented with scheduled dependencies)

46/52

Where is the code?

47/52

Where is the code?

NIR lowering passes (backend specific)
e ac_nir_ lower_ngg
e nir lower_ task_shader

e ac_nir lower taskmesh io to mem

48/52

Where is the code?

RADV code
e radv_pipeline
e radv_cmd buffer

e Major refactor in the submission code

49/52

Demo

50/52

Mesh shading demo

NVidia CAD scene demo
The scene contains nine cars, but the camera focuses
on a single one, most others are fully outside
frustum. The total scene has 32 M triangles and 16
K drawcalls.

51/52

Thanks
Questions, suggestions, discussion?

Mesh shading implementation in Mesa
Timur Kristof

Venemo @ #dri-devel, #radeon, ‘ 4
https://timur.hu

Mesh shading implementation in Mesa
Implementing VK_EXT_mesh_shader in RADV

Timur Kristof

2022

Q XDC
b 2022

	Mesh shading recap
	Mesa mesh shading implementation
	Demo

