RUSTY PIPES AND
OXIDIZED WIRES

Arun Raghavan




ME

GStreamer, PipeWire, PulseAudio person
Previously: Founder, Asymptotic

Currently: Engineer, Valve



MOTIVATION

PipeWire APl is reasonably mature
Rust bindings via FFI exist
More safety would be nice

Better ergonomics



FUNDING

e Massive shoutout to the Sovereign Tech Agency

e Would not have been possible without them



APPROACH

e Don’ttry to rewrite everything

e Client protocol is a good starting point



REALITY

e Servers and clients aren’t that different

e But we can still be strategic



STRUCTURE: SPA

e Simple Plugin API
e Asetofinterfaces

e and their implementations



STRUCTURE: SPA

e Supportinterfaces
e Logging

e System

e Loops

e CPU features



STRUCTURE: SPA

e Other interfaces
e Device

e Node

e Codecs

e AEC



STRUCTURE: SPA

e Serialisation

e Objects

e Formats, params, ...
e POD



STRUCTURE: PIPEWIRE

e Server

e Modules

e Native protocol
e Client library



STRUCTURE: PIPEWIRE + SPA




JUDICIOUS

e SPA
= Pod
s Support interfaces

= Reuse C plugins



JUDICIOUS

e PipeWire
n Client library
= Native protocol

= SO interop is tricky



EXAMPLE CODE

use plpewlre_native as pw;

fn connect_to_pipewire() —-> std::io::Result<()> {
// Basic support initialisation

pw::1nit () ;

// A main loop for PipeWire communication

let main_loop = pw::MainLoop: ::new (pw: :Properties::new());

// The context loads client configuration

let context = pw::Context::new(&main_loop, pw::Properties::new()) ?;

// Connecting provides a "core"

let core = context.connect (None) ?;



EXAMPLE CODE

fn listen_for_objects () —-> std::io0::Result<()> {
// The registry notifies us about global objects

let registry = core.registry () ?;

// To do that we connect a listener
registry.add_listener (RegistryEvents {
// registry is captured by cloning, the rest are arguments
global: some_closure! ([registry] id, perms, type_, ... {
// Do something now that we know an object
// of type_ was added
P
global_remove: some_closure! ([] id, {

// An object went away



EXAMPLE CODE

fn bind_device (registry: pw: :Registry, 1d: u32, type_: &str,

version: u32) —> std::io0::Result<()> {

// Tell the server we want to track this device

let proxy = registry.bind(id, type_, version)?;

// Downcast the generic proxy into the type we know it is

let device =

proxy.downcast: :<pw: :proxy: :device: :Device> () .unwrap () ;

// Call device-specific methods, and set up device-specific

// event listeners



EXAMPLE CODE

pub fn link_nodes(&self, input: &pw::...::Node, output: &pw::...::

// You can even create objects on the server
let mut props = pw: :Properties: :new();
props.set (

pw: :keys: :LINK_INPUT_NODE,

format! ("{}", input.node.proxy () .bound_id () .unwrap()),
) 7
props.set (

pw: :keys: :LINK_OUTPUT_NODE,

format! ("{}", output.node.proxy () .bound_id() .unwrap()),
) 7
self.core

.Create_object ("link—-factory",

pw: :types::interface::LINK, 3, &props)

.unwrap () ;



LOTS TO DO

e Proxy and closure ergonomics
e Streaming
e Profiling






RUST

Lots of (circular) references

Need strong and weak references
Repeated “inner” pattern

Also affects closure capture
Maybe Ergonomic Rc will help


https://smallcultfollowing.com/babysteps/series/ergonomic-rc/

RUST

e Single- vs. multi-threaded
e Mutable borrows would be different

e Not an easy problem (duh)



RUST

Lots to like
Type system allows good modeling

Safety by default
Traits and macros reduce boilerplate
New contributors



LINKS

Crate: https://crates.io/crates/pipewire-native

Tools: https://crates.io/crates/pipewire-native-tools

Code:
https://gitlab.freedesktop.org/pipewire/pipewire-
native-rs

Thanks to Sebastian Droge for early reviews

Feedback is welcome!


https://crates.io/crates/pipewire-native
https://crates.io/crates/pipewire-native-tools
https://gitlab.freedesktop.org/pipewire/pipewire-native-rs
https://gitlab.freedesktop.org/pipewire/pipewire-native-rs

QUESTIONS?




