
RUSTY PIPES AND
OXIDIZED WIRES

Arun Raghavan

ME
GStreamer, PipeWire, PulseAudio person

Previously: Founder, Asymptotic

Currently: Engineer, Valve

MOTIVATION
PipeWire API is reasonably mature

Rust bindings via FFI exist

More safety would be nice

Better ergonomics

FUNDING
Massive shoutout to the Sovereign Tech Agency

Would not have been possible without them

APPROACH
Don’t try to rewrite everything

Client protocol is a good starting point

REALITY
Servers and clients aren’t that different

But we can still be strategic

STRUCTURE: SPA
Simple Plugin API

A set of interfaces

and their implementations

STRUCTURE: SPA
Support interfaces
Logging
System
Loops
CPU features

STRUCTURE: SPA
Other interfaces
Device
Node
Codecs
AEC

STRUCTURE: SPA
Serialisation
Objects
Formats, params, …
POD

STRUCTURE: PIPEWIRE
Server
Modules
Native protocol
Client library

STRUCTURE: PIPEWIRE + SPA

JUDICIOUS 🦀
SPA

Pod

Support interfaces

Reuse C plugins

JUDICIOUS 🦀
PipeWire

Client library

Native protocol

.so interop is tricky

EXAMPLE CODE
use pipewire_native as pw;

fn connect_to_pipewire() -> std::io::Result<()> {

 // Basic support initialisation

 pw::init();

 // A main loop for PipeWire communication

 let main_loop = pw::MainLoop::new(pw::Properties::new());

 // The context loads client configuration

 let context = pw::Context::new(&main_loop, pw::Properties::new())?;

 // Connecting provides a "core"

 let core = context.connect(None)?;

}

EXAMPLE CODE
fn listen_for_objects() -> std::io::Result<()> {

 // The registry notifies us about global objects

 let registry = core.registry()?;

 // To do that we connect a listener

 registry.add_listener(RegistryEvents {

 // registry is captured by cloning, the rest are arguments

 global: some_closure!([registry] id, perms, type_, ... {

 // Do something now that we know an object

 // of type_ was added

 },

 global_remove: some_closure!([] id, {

 // An object went away

 }

 });

}

EXAMPLE CODE
fn bind_device(registry: pw::Registry, id: u32, type_: &str,

 version: u32) -> std::io::Result<()> {

 // Tell the server we want to track this device

 let proxy = registry.bind(id, type_, version)?;

 // Downcast the generic proxy into the type we know it is

 let device =

 proxy.downcast::<pw::proxy::device::Device>().unwrap();

 // Call device-specific methods, and set up device-specific

 // event listeners

 ...

}

EXAMPLE CODE
pub fn link_nodes(&self, input: &pw::...::Node, output: &pw::...::Node) {

 // You can even create objects on the server

 let mut props = pw::Properties::new();

 props.set(

 pw::keys::LINK_INPUT_NODE,

 format!("{}", input.node.proxy().bound_id().unwrap()),

);

 props.set(

 pw::keys::LINK_OUTPUT_NODE,

 format!("{}", output.node.proxy().bound_id().unwrap()),

);

 self.core

 .create_object("link-factory",

 pw::types::interface::LINK, 3, &props)

 .unwrap();

}

LOTS TO DO
Proxy and closure ergonomics
Streaming
Profiling

RUST
Not all 🦄 and 🌈

RUST
Lots of (circular) references
Need strong and weak references
Repeated “inner” pattern
Also affects closure capture
Maybe will helpErgonomic Rc

https://smallcultfollowing.com/babysteps/series/ergonomic-rc/

RUST
Single- vs. multi-threaded

Mutable borrows would be different

Not an easy problem (duh)

RUST
Lots to like
Type system allows good modeling
Safety by default
Traits and macros reduce boilerplate
New contributors

LINKS
Crate:

Tools:

Code:

Thanks to Sebastian Dröge for early reviews

Feedback is welcome!

https://crates.io/crates/pipewire-native

https://crates.io/crates/pipewire-native-tools

https://gitlab.freedesktop.org/pipewire/pipewire-
native-rs

https://crates.io/crates/pipewire-native
https://crates.io/crates/pipewire-native-tools
https://gitlab.freedesktop.org/pipewire/pipewire-native-rs
https://gitlab.freedesktop.org/pipewire/pipewire-native-rs

QUESTIONS?
♥

