
Tulio Beloqui <tulio@pexip.com>

The 

pexLGPL

bundle

GStreamer Conference 2025

mailto:%3ctulio@pexip.com


Everything started with gst-full..

Our goal was to have a single dependency that contains and provides all the LGPL code and symbols that we build.

As a technical benefit, this will ease the shipping of our product -> we *just* pack our binaries plus this bundle.

It allows us to comply with the license, we can opensource the way we create the bundle, and since all of our LGPL forks 

are already public on github, win win.

Everything started with gst-full.. we have been using it for a while, so starting there was the first step.

We defined a "lgpl dep" in a meson project, and started using it as the single dep that which provide all the lgpl symbols 

our binaries needed to run.

gst-full was almost enough!

o Conflicting double instances of glib! (json-glib and our pexrtmpserver depends on glib)

o We have our own os packages for pango and cairo with dependencies which we couldn't use the wrapper system

o We have more dependencies than gstreamer



- The idea started very simple, we build all of the LGPL code we use, as 

*static libraries* and merge them on a single dynamic one.

- This brought us two major challenges:

• doing the merge of the libraries

• get the symbols to be exported!

- For the first challenge, we had to rewrite a bit an existing patch in meson 

that provides us to link static libraries "as-whole", which meant every 

single static library we put in, will pull every symbol from it, into our 

bundle.

• pull in only the library we are linking as-whole (not its own 

dependencies! But we had to reference them later!)

• pex-hack: static and link-as-whole only for libraries inside the prefix 

folder! (to avoid pulling in system libraries!)

• NOTE: Meson has the link_whole() functionality but for meson projects 

you have built yourself! (internal dependencies) It doesn't work on 

external dependencies pulled in from pkg-config. 

- For the second, we had to deal with compiler and linker flags... a lot of 

them... 

The pexLGPL bundle

https://github.com/mesonbuild/meson/pull/9218

https://github.com/mesonbuild/meson/pull/9218


Writing a meson project

• The meson project started to get in shape; by defining a list of the libraries we will include in this bundle:

• glib

• gobject

• gio

• gstreamer-1.0, gstreamer-base, etc etc

• Then a list of gstreamer plugins we build for the selected platform.

• Create pkg-config file...

• Includeing all the libraries include dirs, their compiler and linker flags!

• Use the "pexlgpl_dep" as the dependency for all



Compilers & Linkers

• We had to create a definition map file for the supported compilers, to make sure we understand what we are exporting 

and from *where* (what library?!)

• But.. MSVC linker and its constraints made us go back into the libraries we were dealing with and revisit their export 

macros.

• In msvc, you tag a symbol to be exported at build-time (extern vs dllexport/dllimport), so later the linker knows if it has 

to export it or not.

• In other compilers, (gcc and clang) you can get away with it by using the "extern" keyword, which works for both static 

and dynamic linking <3



Whats next?

• Our patches are here

o https://github.com/pexip/meson

o https://github.com/pexip/gstreamer

• We plan to open source the meson project to build the bundle !

https://github.com/pexip/meson
https://github.com/pexip/gstreamer


Thanks!

• Contact

o tulio@pexip.com

o tulio @ GStreamer Community in Matrix

Come to talk to us for more details :)

mailto:%3ctulio@pexip.com
mailto:%3ctulio@pexip.com

	Slide 1: The pexLGPL bundle
	Slide 2: Everything started with gst-full..
	Slide 3: The pexLGPL bundle
	Slide 4: Writing a meson project
	Slide 5: Compilers & Linkers
	Slide 6: Whats next?
	Slide 7: Thanks!

