
dcSCTP in

GStreamer

Tulio Beloqui <tulio@pexip.com>

GStreamer Conference 2025

mailto:%3ctulio@pexip.com

SCTP – the "p" stands for PAIN!

We have been doing interop with webrtc for a long time and since then, we have been dealing

with data-channels.

We also have interop with the google meeting service and they use data-channels as well... so we

have used the SCTP stack in gstreamer for all of these.

usrsctp maintained by Michael Tüxen (https://github.com/sctplab/usrsctp)

We have also been struggling with the technical debt the usrsctp project:

o use-after-free bugs

o memory leaks

o race conditions

o if-defs jungle

Not to shame usrsctp! as it has been a great stack to begin with, but it doesn't have the traction

we need.

It has done it well so far, but we need to move forward, to a more modern stack.

https://github.com/sctplab/usrsctp

dcSCTP to the rescue

• So we started looking at what SCTP implementations were available and open-source... and the webrtc's

intiative came up!

• Written in C++.

• Licensed under Apache-2.0.

• It is very well written, is up-to-date and very well TESTED.

• Lives in https://chromium.googlesource.com/external/webrtc/+/master/net/dcsctp

• Big thanks to the dcSCTP owner Victor Boivie <boivie@webrtc.org> and the webrtc team involved!

• We looked into the public API and it looked pretty easy to use...so we gave it a chance!

https://chromium.googlesource.com/external/webrtc/+/master/net/dcsctp

Current plugin structure

sctpenc sctpdecdtls

sctp-association

usrsctp

Let's start porting!

• We started porting the library into GStreamer...

• The goal was simple: remove usrsctp, put in place the new library and rework the sctp-association to use it.

• The library lives in the webrtc git repo, so we have to do some scripting to get only the bits we needed from the code.

• Cloned the repo, copied some files over.. pulled in some of its dependencies.

• Wrote a meson project to start building it...

• We wrote a thin layer on top of a sctp-socket that the library comes with, which felt the natural place to make

the C++ <-> C interop, and we replaced the usrsctp socket with this new one.

• We introduced a sctp-association-factory responsible for handling the lifetime of the sctp-associations, as they could be

shared between the encoder and decoders.

• The factory also contains its own GMainLoop to handle the lifetime of the objects, sctp timers, so all SCTP sockets

operations are single-threaded.

• Everything fall into place! and when we ran our test suite... all test passed!

SCTP-harness! (1 of 3)

A harness for writing classic abe to bob style tests!

SctpHarness

SctpSession

sctpenc ! valve sctpdec

.

.

.

SCTP-harness! (2 of 3)

Final conclusions

• Even if it sounds scary, sometimes is okay to replace building blocks

• dcSCTP proved to be a great upgrade for us

o We have not gotten a single crash report since we upgraded to dcSCTP (jinx)

o Performance was also impacted massively, our test suite runtime cut in half!

o The "dc" might stand for does-not-crash!

• Thanks to the dcSCTP owner Victor Boivie <boivie@webrtc.org> andthe webrtc team involved!

What's next?

dcSCTP rust successor: https://github.com/webrtc/dcsctp

• We will upstream this work during the hackfest ! all of it!

• Help needed testing it within webrtcbin, any takers?!

mailto:%3cboivie@webrtc.org
https://github.com/webrtc/dcsctp

Thanks!

• Contact

o tulio@pexip.com

o tulio @ GStreamer Community in Matrix

Questions?

mailto:%3ctulio@pexip.com
mailto:%3ctulio@pexip.com

	Slide 1: dcSCTP in GStreamer
	Slide 2: SCTP – the "p" stands for PAIN!
	Slide 3: dcSCTP to the rescue
	Slide 4: Current plugin structure
	Slide 5: Let's start porting!
	Slide 6: SCTP-harness! (1 of 3)
	Slide 7: SCTP-harness! (2 of 3)
	Slide 8:
	Slide 9: Final conclusions
	Slide 10: Thanks!

