] pexip[

dcSCTP iIn
GStreamer

GStreamer Conference 2025

Tulio Beloqui <tulio@pexip.com>

mailto:%3ctulio@pexip.com

SCTP - the "p" stands for PAIN!

®* \WWe have been doing interop with webrtc for a long time and since then, we have been dealing
with data-channels.

® \We also have interop with the google meeting service and they use data-channels as well... so we
have used the SCTP stack in gstreamer for all of these.

® usrsctp maintained by Michael Tiixen (https://github.com/sctplab/usrsctp)

® \We have also been struggling with the technical debt the usrsctp project:
o use-after-free bugs
o memory leaks
o race conditions
o if-defs jungle

® Not to shame usrsctp! as it has been a great stack to begin with, but it doesn't have the traction
we need.

® |t has done it well so far, but we need to move forward, to a more modern stack.

1 pexip|

https://github.com/sctplab/usrsctp

dcSCTP to the rescue

* So we started looking at what SCTP implementations were available and open-source... and the webrtc's
intiative came up!

* Written in C++.

* Licensed under Apache-2.0.

* Itis very well written, is up-to-date and very well TESTED.

* Lives in https://chromium.googlesource.com/external/webrtc/+/master/net/dcsctp

* Big thanks to the dcSCTP owner Victor Boivie <boivie@webrtc.org> and the webrtc team involved!

* We looked into the public APl and it looked pretty easy to use...so we gave it a chance!

1 pexip|

https://chromium.googlesource.com/external/webrtc/+/master/net/dcsctp

Current plugin structure

sctpenc)
G

‘;:7

h

:

1 pexip|

Let's start porting!

We started porting the library into GStreamer...

The goal was simple: remove usrsctp, put in place the new library and rework the sctp-association to use it.

The library lives in the webrtc git repo, so we have to do some scripting to get only the bits we needed from the code.
Cloned the repo, copied some files over.. pulled in some of its dependencies.
Wrote a meson project to start building it...

We wrote a thin layer on top of a sctp-socket that the library comes with, which felt the natural place to make
the C++ <-> C interop, and we replaced the usrsctp socket with this new one.

We introduced a sctp-association-factory responsible for handling the lifetime of the sctp-associations, as they could be
shared between the encoder and decoders.

The factory also contains its own GMainLoop to handle the lifetime of the objects, sctp timers, so all SCTP sockets
operations are single-threaded.

Everything fall into place! and when we ran our test suite... all test passed!

1 pexip|

SCTP-harness! (1 of 3)

A harness for writing classic abe to bob style tests!

/SctpHarness \

SctpSession

1 pexip|

SCTP-harness! (2 of 3)

1 guint sctp_harness_session_new (SctpHarness = h, guint 1id,
2 gboolean aggressive_heartbeat);

4 GstHarness = sctp_harness_create_send_stream (SctpHarness % h,
guint session_id, guint stream_id);

GstHarness % sctp_harness_wait_for_stream_created (SctpHarness = h,
8 guint session_id, guint stream_id);

1 pexip|

GST_START_TEST (sctp_stream_create_and_destroy)

{

const guint a = 1, b = 2;

const guint sctp_ppid = 51;

SctpHarness xh = sctp_harness_new (FALSE);
GstHarness %a_send, #xb_recv;

sctp_harness_session_new Ch, a, FALSE);
sctp_harness_session_new Ch, b, FALSE);

sctp_harness_connect_sessions (Ch, a, b);

fail_unless (sctp_harness_wait_for_association_established Ch, a));
fail_unless (sctp_harness_wait_for_association_established Ch, b));

/* Create send stream =/
a_send = sctp_harness_create_send_stream Ch, a, a);
gst_harness_set_src_caps_str (a_send, "application/x-data");

/* Create and push buffer =/

guint8 xdata = ...

GstBuffer =xbuf = ...

gst_sctp_buffer_add_send_meta (buf, sctp_ppid, TRUE, ©, @);
gst_harness_push (a_send, buf);

/* Expect recv stream to be created x/
b_recv = sctp_harness_wait_for_stream_created Ch, b, ad;
fail_unless (b_recv != NULL);

/* Retrieve buffer from recv stream %/
GstBuffer xrecvbuf = gst_harness_pull (b_recv);

/* Ensure it looks sane */

fail_unless_equals_int ((gint) gst_buffer_get_size (recvbuf), sizeof (dat

fail unless_equals_int ((gint) gst _buffer_memcmp (recvbuf, @, data,
sizeof (data)), @);

GstSctpReceiveMeta #»recv_meta = gst_sctp_buffer_get_receive_meta (recvbuf

fail_unless_equals_int (recv_meta->ppid, sctp_ppid);
gst_buffer_unref (recvbuf);

/* Destroy the send stream =/
sctp_harness_destroy_send_stream Ch, a, aJ);

/* Expect the corresponding recv stream to be destroyed %/

fail_unless (sctp_harness_wait_for_stream_destroyed Ch, b, a));

sctp_harness_teardown (h);

GST_START_TEST (sctp_disconnect_unclean_stream_sock)
{

const guint a = 1, b = 2;
SctpHarness xh = sctp_harness_new (TRUE);

sctp_harness_session_new Ch, a, TRUE);
sctp_harness_session_new Ch, b, FALSE);

sctp_harness_connect_sessions Ch, a, b);

fail_unless (sctp_harness_wait_for_association_established Ch, a));
fail_unless (sctp_harness_wait_for_association_established Ch, b));

sctp_harness_break_network Ch, a);

fail_unless (sctp_harness_wait_for_association_disestablished Ch, a))

sctp_harness_unbreak_network Ch, a);
sctp_harness_reconnect_session Ch, a);

fail_unless (sctp_harness_wait_for_association_established Ch, a));

fail_unless (sctp_harness_wait_for_association_restarted Ch, b));

sctp_harness_teardown Ch);

}

GST_END_TEST;

1 pexip|

Final conclusions

® Even if it sounds scary, sometimes is okay to replace building blocks
® dcSCTP proved to be a great upgrade for us
o We have not gotten a single crash report since we upgraded to dcSCTP (jinx)
o Performance was also impacted massively, our test suite runtime cut in half!
o The "dc" might stand for does-not-crash!
® Thanks to the dcSCTP owner Victor Boivie <boivie@webrtc.org> andthe webrtc team involved!

What's next?
® dcSCTP rust successor: https://github.com/webrtc/dcsctp

® \WWe will upstream this work during the hackfest ! all of it!
® Help needed testing it within webrtcbin, any takers?!

1 pexip|

mailto:%3cboivie@webrtc.org
https://github.com/webrtc/dcsctp

Thanks!

« Contact
o tulio@pexip.com
o tulio @ GStreamer Community in Matrix

Questions?

1 pexip|

mailto:%3ctulio@pexip.com
mailto:%3ctulio@pexip.com

	Slide 1: dcSCTP in GStreamer
	Slide 2: SCTP – the "p" stands for PAIN!
	Slide 3: dcSCTP to the rescue
	Slide 4: Current plugin structure
	Slide 5: Let's start porting!
	Slide 6: SCTP-harness! (1 of 3)
	Slide 7: SCTP-harness! (2 of 3)
	Slide 8:
	Slide 9: Final conclusions
	Slide 10: Thanks!

