] pexip [

Why keep a
thread running idling?

Meet GstbaseIdleSrc

Camilo Celis Guzman
camilo@pexip.com

GStreamer Conference — October 2025

Story time!

e Pexip’s Core Characteristics:
— Transcoding-centric architecture.
— Interop (To/From anything and everything™)
- Large enterprice customers - Large-scale deployments.
— Distributed system across multiple regions.
— Many concurrent meetings, often with tens of participants per call.

® |ssue: “Signal 6, on conference main entry point”
- ¢ CPU usage skyrocketed
- M Memory pressure > OOM Kkiller almost triggered
— 2= System idle time = 0%
— Result: Sadness (¢

] pexip[

The Problem

e Graphics source element!
— Built from a base source class.
— Logic: constructs some graphics, pushes once (externally controlled).
— Single thread that becomes idle (in the OS) until new data is provided
— Rarely new data is generated (max. couple of times in the lifetime of a meeting).

« CPU overhead:
« virtually none if properly programmed (I/O, timer, sync primitives).
« Management overhead
« Memory overhead: fixed
« Stack
» Control block
* Local storage
 Thread limit OS/Kernel

I. Thread re-creation are often far more costly than context switches.

1pexip[

The Solution

PHASE 1: WORK (HAPPY!)

o <SS o TASK QUEUE
S %1 (PROCESSING)

THREAD POOL

® New source class: GstBaseldleSrc!

— Similar to GstBaseSrc / GstPushSrc
— Push only mode
— Non-live source

— Internal short-lived thread
that handles streaming of data

PHASE 2: THREAD TERMINATION

DONE!

J = @\ THREAD (pROCESSING)

OFF DUTY!
PHASE 3: OH NO! MORE MORE WORK!
N’
zz ' ,, N\
NEW TASK " @ TASK QUEUE
REQUEST e~ (PENDING/PROCESSING)
U,

RECYCLED ON DEMAND

Source: Gemini

] pexip[

From {Base,Push}Src > BaseldleSrc

def thread_func (...) {
while (not flushing and not EOS) {

subclass.create (buf)
push (buf)
}
def submit (...) {
queue.append (buf)
start_tasK (process_queue)

}

def process_queue (...
for (buf : queue) {
push (buf)

}

Ipexip[

Other options?

_ GstBaseSrc GstPushSrc GstBaseldleSrc

Purpose

Data Flow

Thread Model

Subclass
Responsibility

Use cases

Thread overhead

Generic abstract class

Push / Pull

No internal thread by
default

fill(), create()

File sources,
random-access

Low; depends on subclass

Constrained source

Push only

Internal thread
create() 2 push()

create()

Live on continious data
sources

Low

|dle or on-demand sources
Push-like (idle-driven)
Short-lived on-demand

thread(s)

queue_object()

Opportunistic / low-activity
sources

Potentially high if pushes are
frequent

1pexip[

Next steps

® Thread pools

e Consider threadshare concepts (async runtime)!

® Smarter scheduling / pacing of buffers

® Consider other elements that could benefit from it (GstAppSrc maybe?)
® Extended performance test — comparisons of different scenarios

github.com/pexip/gstreamer

] pexip[

Thank you!

Q&A

] pexip[

github.com/pexip/gstreamer

	Slide 1
	Slide 2: Story time!
	Slide 3: The Problem
	Slide 4: The Solution
	Slide 5: From {Base,Push}Src  BaseIdleSrc
	Slide 6: Other options?
	Slide 7: Next steps
	Slide 8: Thank you! Q & A
	Slide 9

