
Meet GstbaseIdleSrc

GStreamer Conference – October 2025

Camilo Celis Guzman

camilo@pexip.com

Why keep a

thread running idling?

Pexip’s Core Characteristics:

– Transcoding-centric architecture.

– Interop (To/From anything and everything)

– Large enterprice customers → Large-scale deployments.

– Distributed system across multiple regions.

– Many concurrent meetings, often with tens of participants per call.

Issue: “Signal 6, on conference main entry point”

– CPU usage skyrocketed

– Memory pressure → OOM killer almost triggered

– System idle time = 0%

– Result: Sadness

Story time!

Graphics source element!

– Built from a base source class.

– Logic: constructs some graphics, pushes once (externally controlled).

– Single thread that becomes idle (in the OS) until new data is provided

– Rarely new data is generated (max. couple of times in the lifetime of a meeting).

• CPU overhead:

• virtually none if properly programmed (I/O, timer, sync primitives).

•Management overhead

• Memory overhead: fixed

•Stack

•Control block

•Local storage

• Thread limit OS/Kernel

Thread re-creation are often far more costly than context switches.

The Problem

New source class: GstBaseIdleSrc!

– Similar to GstBaseSrc / GstPushSrc

– Push only mode

– Non-live source

– Internal short-lived thread

that handles streaming of data

The Solution

Source: Gemini

From {Base,Push}Src→ BaseIdleSrc

GstBaseSrc GstPushSrc GstBaseIdleSrc

Purpose Generic abstract class Constrained source Idle or on-demand sources

Data Flow Push / Pull Push only Push-like (idle-driven)

Thread Model No internal thread by

default

Internal thread

create() → push()

Short-lived on-demand

thread(s)

Subclass

Responsibility

fill(), create() create() queue_object()

Use cases File sources,

random-access

Live on continious data

sources

Opportunistic / low-activity

sources

Thread overhead Low; depends on subclass Low Potentially high if pushes are

frequent

Other options?

Thread pools

Consider threadshare concepts (async runtime)!

Smarter scheduling / pacing of buffers

Consider other elements that could benefit from it (GstAppSrc maybe?)

Extended performance test – comparisons of different scenarios

github.com/pexip/gstreamer

Next steps

Thank you!

Q & A

github.com/pexip/gstreamer

	Slide 1
	Slide 2: Story time!
	Slide 3: The Problem
	Slide 4: The Solution
	Slide 5: From {Base,Push}Src  BaseIdleSrc
	Slide 6: Other options?
	Slide 7: Next steps
	Slide 8: Thank you! Q & A
	Slide 9

