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About me

e Worked on different low-level software: from embedded to OS
development
e Since 2021 work for Meta on camera and sensor recording software



What we are doing

e Camera and sensor recording software for factory calibration and

algorithm validation
o Modern VR devices have many cameras and sensors
o On factories and labs we record all sensors to file on device for offline processing
o Recording to VRS file format
o Allinternal software use this format for data processing

e Lab datarecordings to train and evaluate CV algorithms

Privacy note: Recording software is internal tool and is not included in devices
firmware


https://facebookresearch.github.io/vrs/docs/Overview/

VRS file format

optimized to record and playback streams of sensor data
multiple streams of time-sorted records

streams may contain Configuration, State and Data records
supports huge file sizes

Open-source: https://github.com/facebookresearch/vrs



https://github.com/facebookresearch/vrs

Why GStreamer

e Need for an extensible media framework for recording and streaming
e Flexibility to support different requests from the internal partners

e Existing solution
o Not flexible enough, e.g. adding streaming requires to change architecture
o To simplify extension we have implemented plugin system, which was not so mature as
GStreamer plugins

e (GStreamer

o  We canreuse common building block for creating different pipelines (e.g. streaming)
o Mature plugin system simplifies new source plugin development
o Internal partners can implement plugins



Challenges

e Streaming and recording of uncompressed camera data at nominal frame rate
o Required bandwidth > 1GB/s for all cameras
o Limited by internal storage and network bandwidth
o  Workarounds - different configurations:
m record only one set cameras for one case and another set for another case
m reducing FPS
m image binning
m encoding
e Compatibility with existing tools and frameworks (data types, VRS)
o Vrs-sink element
o  Streaming using internal data formats instead of raw/video-x

e Camera stackis different from other OS
o All source plugins are developed in-house

e Support not only video and audio
e CPU load and memory usage limitation



How we use GStreamer

e RTSP solution for streaming

e On-device recorder

e Elementlibrary to build custom pipelines using gst-launch or
programmatically



Streaming solution

e Server
o Basedon gstreamer-rtsp-server
o Dynamic pipeline building and configuration
o Custom control command for configuration and getting information using RTCP
SetParameter and GetParameter.
e C++client APllibrary
o simplifies integration to existing projects
m usein-house datatypes
m otherteams don’t want interact with GStreamer directly

Why RTSP?
e Standardized protocol for streaming
e Supports play, stop, configuration commands out of the box
e Mature server and client implementations in GStreamer
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On device recorder

Common code base with streaming solution
CLI user interface for common recording cases
Programmatically builds pipeline

Produces VRS file

CLlI interface and pipeline building
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Custom pipelines

e For experimentation

gst-launch-1.0 \
camerasrc <parameters> ! tee name=t \
t. ! queue ! vrssink location=test.vrs \
t. ! queue ! x264enc ! rtph264pay ! udpsink <params>



Challenges and learnings

e Ref-countingis difficult
o GST Debug and Tracer

e Mixing with C++ code
o Sanitizers and GST Leak tracer
o Wrappers

e Steep learning curve

o Many really good examples, but they cover mostly simple cases
o Raising expertise in the team in the process of building products



Future plans

e Fully replace current solutions with GStreamer-based one
e Extend set of elements to cover all required recording and streaming

cases
e Keep the new solution easily configurable and extendable to support more

cases and simplify experimentation
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