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About me

● Worked on different low-level software: from embedded to OS 
development

● Since 2021 work for Meta on camera and sensor recording software



What we are doing

● Camera and sensor recording software for factory calibration and 
algorithm validation

○ Modern VR devices have many cameras and sensors
○ On factories and labs we record all sensors to file on device for offline processing
○ Recording to VRS file format
○ All internal software use this format for data processing

● Lab data recordings to train and evaluate CV algorithms

Privacy note: Recording software is internal tool and is not included in devices 
firmware

https://facebookresearch.github.io/vrs/docs/Overview/


VRS file format

● optimized to record and playback streams of sensor data
● multiple streams of time-sorted records
● streams may contain Configuration, State and Data records
● supports huge file sizes

Open-source: https://github.com/facebookresearch/vrs

https://github.com/facebookresearch/vrs


Why GStreamer

● Need for an extensible media framework for recording and streaming
● Flexibility to support different requests from the internal partners
● Existing solution

○ Not flexible enough, e.g. adding streaming requires to change architecture
○ To simplify extension we have implemented plugin system, which was not so mature as 

GStreamer plugins

● GStreamer
○ We can reuse common building block for creating different pipelines (e.g. streaming)
○ Mature plugin system simplifies new source plugin development
○ Internal partners can implement plugins



Challenges

● Streaming and recording of uncompressed camera data at nominal frame rate
○ Required bandwidth > 1GB/s for all cameras
○ Limited by internal storage and network bandwidth
○ Workarounds - different configurations:

■ record only one set cameras for one case and another set for another case
■ reducing FPS
■ image binning
■ encoding

● Compatibility with existing tools and frameworks (data types, VRS)
○ Vrs-sink element
○ Streaming using internal data formats instead of raw/video-x

● Camera stack is different from other OS
○ All source plugins are developed in-house

● Support not only video and audio
● CPU load and memory usage limitation



● RTSP solution for streaming
● On-device recorder
● Element library to build custom pipelines using gst-launch or 

programmatically

How we use GStreamer



Streaming solution

● Server
○ Based on gstreamer-rtsp-server
○ Dynamic pipeline building and configuration
○ Custom control command for configuration and getting information using RTCP 

SetParameter and GetParameter.
● C++ client API library 

○ simplifies integration to existing projects
■ use in-house data types
■ other teams don’t want interact with GStreamer directly

Why RTSP?
● Standardized protocol for streaming
● Supports play, stop, configuration commands out of the box
● Mature server and client implementations in GStreamer
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On device recorder
● Common code base with streaming solution
● CLI user interface for common recording cases
● Programmatically builds pipeline
● Produces VRS file

Camera source 

Other source

VRS sink

CLI interface and pipeline building

VRS



● For experimentation

gst-launch-1.0 \
  camerasrc <parameters> ! tee name=t \
  t. ! queue ! vrssink location=test.vrs \
  t. ! queue ! x264enc ! rtph264pay ! udpsink <params>

Custom pipelines



Challenges and learnings

● Ref-counting is difficult
○ GST Debug and Tracer

● Mixing with C++ code
○ Sanitizers and GST Leak tracer
○ Wrappers

● Steep learning curve
○ Many really good examples, but they cover mostly simple cases
○ Raising expertise in the team in the process of building products



Future plans

● Fully replace current solutions with GStreamer-based one
● Extend set of elements to cover all required recording and streaming 

cases
● Keep the new solution easily configurable and extendable to support more 

cases and simplify experimentation
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