GStreamerin VR devices
manufacturing

Ivan Loskutov
Software Engineer 00 MetC]



About me

e Worked on different low-level software: from embedded to OS
development
e Since 2021 work for Meta on camera and sensor recording software



What we are doing

e Camera and sensor recording software for factory calibration and

algorithm validation
o Modern VR devices have many cameras and sensors
o On factories and labs we record all sensors to file on device for offline processing
o Recording to VRS file format
o Allinternal software use this format for data processing

e Lab datarecordings to train and evaluate CV algorithms

Privacy note: Recording software is internal tool and is not included in devices
firmware


https://facebookresearch.github.io/vrs/docs/Overview/

VRS file format

optimized to record and playback streams of sensor data
multiple streams of time-sorted records

streams may contain Configuration, State and Data records
supports huge file sizes

Open-source: https://github.com/facebookresearch/vrs



https://github.com/facebookresearch/vrs

Why GStreamer

e Need for an extensible media framework for recording and streaming
e Flexibility to support different requests from the internal partners

e Existing solution
o Not flexible enough, e.g. adding streaming requires to change architecture
o To simplify extension we have implemented plugin system, which was not so mature as
GStreamer plugins

e (GStreamer

o  We canreuse common building block for creating different pipelines (e.g. streaming)
o Mature plugin system simplifies new source plugin development
o Internal partners can implement plugins



Challenges

e Streaming and recording of uncompressed camera data at nominal frame rate
o Required bandwidth > 1GB/s for all cameras
o Limited by internal storage and network bandwidth
o  Workarounds - different configurations:
m record only one set cameras for one case and another set for another case
m reducing FPS
m image binning
m encoding
e Compatibility with existing tools and frameworks (data types, VRS)
o Vrs-sink element
o  Streaming using internal data formats instead of raw/video-x

e Camera stackis different from other OS
o All source plugins are developed in-house

e Support not only video and audio
e CPU load and memory usage limitation



How we use GStreamer

e RTSP solution for streaming

e On-device recorder

e Elementlibrary to build custom pipelines using gst-launch or
programmatically



Streaming solution

e Server
o Basedon gstreamer-rtsp-server
o Dynamic pipeline building and configuration
o Custom control command for configuration and getting information using RTCP
SetParameter and GetParameter.
e C++client APllibrary
o simplifies integration to existing projects
m usein-house datatypes
m otherteams don’t want interact with GStreamer directly

Why RTSP?
e Standardized protocol for streaming
e Supports play, stop, configuration commands out of the box
e Mature server and client implementations in GStreamer



Streaming solution

Headset

Streaming service

PC/Laptop

RTSP
client

Host library




On device recorder

Common code base with streaming solution
CLI user interface for common recording cases
Programmatically builds pipeline

Produces VRS file

CLlI interface and pipeline building

Camera source

> VRS sink

Other source

VRS



Custom pipelines

e For experimentation

gst-launch-1.0 \
camerasrc <parameters> ! tee name=t \
t. ! queue ! vrssink location=test.vrs \
t. ! queue ! x264enc ! rtph264pay ! udpsink <params>



Challenges and learnings

e Ref-countingis difficult
o GST Debug and Tracer

e Mixing with C++ code
o Sanitizers and GST Leak tracer
o Wrappers

e Steep learning curve

o Many really good examples, but they cover mostly simple cases
o Raising expertise in the team in the process of building products



Future plans

e Fully replace current solutions with GStreamer-based one
e Extend set of elements to cover all required recording and streaming

cases
e Keep the new solution easily configurable and extendable to support more

cases and simplify experimentation



Q&A



O\ Meta



