
GStreamer in VR devices
manufacturing

Ivan Loskutov
Software Engineer

About me

● Worked on different low-level software: from embedded to OS
development

● Since 2021 work for Meta on camera and sensor recording software

What we are doing

● Camera and sensor recording software for factory calibration and
algorithm validation

○ Modern VR devices have many cameras and sensors
○ On factories and labs we record all sensors to file on device for offline processing
○ Recording to VRS file format
○ All internal software use this format for data processing

● Lab data recordings to train and evaluate CV algorithms

Privacy note: Recording software is internal tool and is not included in devices
firmware

https://facebookresearch.github.io/vrs/docs/Overview/

VRS file format

● optimized to record and playback streams of sensor data
● multiple streams of time-sorted records
● streams may contain Configuration, State and Data records
● supports huge file sizes

Open-source: https://github.com/facebookresearch/vrs

https://github.com/facebookresearch/vrs

Why GStreamer

● Need for an extensible media framework for recording and streaming
● Flexibility to support different requests from the internal partners
● Existing solution

○ Not flexible enough, e.g. adding streaming requires to change architecture
○ To simplify extension we have implemented plugin system, which was not so mature as

GStreamer plugins

● GStreamer
○ We can reuse common building block for creating different pipelines (e.g. streaming)
○ Mature plugin system simplifies new source plugin development
○ Internal partners can implement plugins

Challenges

● Streaming and recording of uncompressed camera data at nominal frame rate
○ Required bandwidth > 1GB/s for all cameras
○ Limited by internal storage and network bandwidth
○ Workarounds - different configurations:

■ record only one set cameras for one case and another set for another case
■ reducing FPS
■ image binning
■ encoding

● Compatibility with existing tools and frameworks (data types, VRS)
○ Vrs-sink element
○ Streaming using internal data formats instead of raw/video-x

● Camera stack is different from other OS
○ All source plugins are developed in-house

● Support not only video and audio
● CPU load and memory usage limitation

● RTSP solution for streaming
● On-device recorder
● Element library to build custom pipelines using gst-launch or

programmatically

How we use GStreamer

Streaming solution

● Server
○ Based on gstreamer-rtsp-server
○ Dynamic pipeline building and configuration
○ Custom control command for configuration and getting information using RTCP

SetParameter and GetParameter.
● C++ client API library

○ simplifies integration to existing projects
■ use in-house data types
■ other teams don’t want interact with GStreamer directly

Why RTSP?
● Standardized protocol for streaming
● Supports play, stop, configuration commands out of the box
● Mature server and client implementations in GStreamer

Streaming solution

Host libraryStreaming service

Camera
service

Camera source plugin

Any data
provider

RTSP
payloading

RTSP
server

Control msgs handler

Other source plugin

RTSP
client

Control
msgs

Data
streaming

C++ API

Headset PC/Laptop

On device recorder
● Common code base with streaming solution
● CLI user interface for common recording cases
● Programmatically builds pipeline
● Produces VRS file

Camera source

Other source

VRS sink

CLI interface and pipeline building

VRS

● For experimentation

gst-launch-1.0 \
 camerasrc <parameters> ! tee name=t \
 t. ! queue ! vrssink location=test.vrs \
 t. ! queue ! x264enc ! rtph264pay ! udpsink <params>

Custom pipelines

Challenges and learnings

● Ref-counting is difficult
○ GST Debug and Tracer

● Mixing with C++ code
○ Sanitizers and GST Leak tracer
○ Wrappers

● Steep learning curve
○ Many really good examples, but they cover mostly simple cases
○ Raising expertise in the team in the process of building products

Future plans

● Fully replace current solutions with GStreamer-based one
● Extend set of elements to cover all required recording and streaming

cases
● Keep the new solution easily configurable and extendable to support more

cases and simplify experimentation

Q&A

