
1

Hardware Accelerated Live Broadcasting
Johan Jino, Gareth Sylvester-Bradley | GStreamer Conference 2025

2

Hardware Accelerated Live
Broadcasting

Look at the Data Rate!

• Typical H.265 1080p60 stream is around 5-10Mb/s

• Uncompressed 1080p60 stream, 10bit, 4:2:2 subsampling is
2.5Gb/s

• 250x higher than typical compressed streams!

• Single 4k60 streams go above 10Gb/s

• Professional production facilities need support for multiple
uncompressed video streams at high res and frame rate

But why do professional broadcast/live production industry need
uncompressed streams?

• Quality matters through multiple hops in production. No
encode/decode loss.

• Minimize latency. Encoding/Decoding adds latency between
every transmission. Multiple hops, this accumulate.

Why the need for Hardware Acceleration?

3

Serial Digital Interface (SDI)

• Uncompressed unencrypted digital video signal

• First introduced in 1989 with regular refreshes until 2015

• 3G-SDI (2006) 3Gb/s 1080p60 is mostly used

• A lot of production still using 1080 interlaced cameras

• Multi-camera lock/sync, audio & ancillary data with same
connectors

Standardized by SMPTE

4

IP Transition
SMPTE ST 2110 – RTP over UDP with traffic shaping

Technology SDI NDI SMPTE ST 2110

Image Quality Excellent Good Excellent

Bandwidth 3-12 Gb/s 90 to 350 Mb/s 1 to 50 Gb/s (8K)

Network Type SDI 1 to 10 Gb/s 10 to 400 Gb/s

Synchronization Genlock Possible PTP

Quality

Ease of use

BandwidthLatency

Scalability

Chart Title

SDI

NDI

ST-2110 (2018)

ST-2110
(Today)

5

Hardware Accelerated Live Broadcasting
Broadcasting of Uncompressed ST 2110 Streams with GStreamer leveraging NVIDIA GPUs and NICs

• ST 2110 operates by sending media streams over IP networks, like how data travels on the internet, but with broadcast-
grade precision.

• Why use GStreamer in between?

• Brings advanced media applications and ease-of-use

• Consistent high-level programmatic APIs (C and Python) for plugins

• Ability to add own custom plugins and app integration

• What is needed for GStreamer to deliver full ST 2110 and more:

• Packet pacing -> NvDsUdp

• Hardware Optimised-> Also NvDsUdp

• Dynamic reconfigurability -> NvDsNmosbin

• Ancillary Data Streaming -> rtpsmpte291pay/depay

highlighted are NVIDIA built GStreamer plugins/elements

6

• DeepStream Extends GStreamer via plugins
• GPU accelerated filter elements

• Efficient buffer passing between elements

• Integrates with NVIDIA AI toolkits

• SMPTE ST 2110 source and sink elements

• NMOS support library

• Uses Rivermax for optimized networking

• Rivermax is an optimised networking SDK for
media streaming

• API for ST 2110 Tx and Rx on COTS NICs, e.g. ConnectX-6Dx

• Provides highly optimised network transfers

• Used by DeepStream NvDsUdp plugin

DeepStream and Rivermax
Toolkit for video, audio, and image understanding

7

Technical Deepdive

DeepStream NvDsUdp Plugin

• GStreamer plugin for hardware-accelerated (Rivermax-enabled)
transport that replaces generic GstUdp src/sink.

• Like GstUdp but with built-in rtppay and rtpdepay*

• Direct GPU-to-NIC memory transfers using kernel bypass

• Packet paced according to SMPTE ST 2110

• Benefits:

* Currenly only for raw video and audio

8

Technical Deepdive

DeepStream NvDsUdp Plugin

• GStreamer plugin for hardware-accelerated (Rivermax-enabled)
transport that replaces generic GstUdp src/sink.

• Like GstUdp but with built-in rtppay and rtpdepay*

• Direct GPU-to-NIC memory transfers using kernel bypass

• Packet paced according to SMPTE ST 2110

• Benefits:
• Supports full ST 2110, which constrains some RTP packet headers more than the

base RFC 4175 (rtpvraw)

• More performant than single-threaded implementation of the OSS payloader
which isn’t sufficiently performant for 4k60,

• Takes advantage of Rivermax’s header-data split feature where payload goes
to/from the GPU but headers are handled on the CPU.

* Currenly only for raw video and audio

9

Technical Deepdive

• GStreamer plugin for hardware-accelerated (Rivermax-enabled)
transport that replaces generic GstUdp src/sink.

• Like GstUdp but with built-in rtppay and rtpdepay

• Direct GPU-to-NIC memory transfers using kernel bypass

• Packet paced according to SMPTE ST 2110

• Benefits:

• Lower CPU Utilization –10Gb/s 85% of 1 Core Vs. 5% of 1 Core with
Rivermax. (10Gb/s = 1 4k60 uncompressed stream)

• Utilize NIC HW accelerators to increase performance and simplify the
solution i.e. RTP header insertion/stripping

• Reduced host memory to GPU memory copy, allowing higher throughput.

DeepStream NvDsUdp Plugin

* Currenly only for raw video and audio

10

Technical Deepdive

• GStreamer plugin for hardware-accelerated (Rivermax-enabled)
transport that replaces generic GstUdp src/sink.

• Like GstUdp but with built-in rtppay and rtpdepay*

• Direct GPU-to-NIC memory transfers using kernel bypass

• Packet paced according to SMPTE ST 2110

• Benefits:

• Jitter free transmission

• Inter Packet Gap for 4K can be < 1𝜇s. Transmission done asynchronously in
NIC HW ensures this target can be met.

DeepStream NvDsUdp Plugin Video buffer

Network

RTP Packets

* Currenly only for raw video and audio

11

NMOS with GStreamer - NvDsNmosBin
Networked Media Open Specification

• NMOS provides APIs for discovery, registration and control of ST 2110
and other media over IP networks

• NvdsNmosBin element bring this easy configurability to GStreamer

• Instantiates senders/receivers within pipelines and updates parameters
on-the-fly using NMOS callbacks

• Uses GStreamer bins and ghost pads to dynamically configure and
manage multiple sinks and sources

• Fully open source, built on top of other OSS including nvidia/nvnmos,
sony/nmos-cpp and other low-level C++ libs.

12

Chaining them together
Brining performance within easy abstractions

• Build simple GStreamer pipelines with just NvDsNmosbin sinks
and sources

• Internally, it will create the correct NvDsUdp source and sink
elements based on media and encoding type

• Result: Leverage Rivermax performance and NMOS
configurability with 1 simple open source GStreamer element!

• Pass GPU (NVMM) buffers directly to other DeepStream
accelerated elements

• Or connect to any GStreamer elements, via nvvideoconvert to
move data from GPU to system memory

NvDsNmosbin

DeepStream

NvDsUdp Plugin

Rivermax

GPUs NICs

GStreamer Applications

13

Simple ST 2110 video streaming

?
videotestsrc

src

nvdsnmosbin

sink

queue

srcsink

gst-launch-1.0
 nvdsnmosbin name=nmos
 sink_1::sdp=file:///example.sdp
 sink_1::nvdsudpsink-desc="nvdsudpsink payload-size=1220 packets-per-line=4"
 videotestsrc pattern=19 !
 'video/x-raw, width=1920, height=1080, format=(string)UYVP, framerate=60/1' !
 queue !
 nmos.sink_1

ST 2110

14

GPU-Accelerated Processing

nvdsnmosbin

srcsink

nvvideoconvert

srcsink

gst-launch-1.0
 nvdsnmosbin name=nmos
 src_1::sdp=file:///example.sdp
 src_1::nvdsudpsrc-desc="nvdsudpsrc …"
 sink_1::sdp=file:///example.sdp
 sink_1::nvdsudpsink-desc="nvdsudpsink …"
 nmos.src_1 !
 'video/x-raw(memory:NVMM), width=1920, height=1080, format=UYVP, framerate=60/1' !
 queue ! nvvideoconvert flip-method=rotate-180 !
 'video/x-raw, width=1920, height=1080, format=UYVP, framerate=60/1' !
 queue !
 nmos.sink_1

ST 2110 ST 2110

15

GPU-Accelerated Transcode

nvdsnmosbin

src

srtsink

sink

gst-launch-1.0
 nvdsnmosbin name=nmos
 src_1::sdp=file:///example.sdp
 src_1::nvdsudpsrc-desc="nvdsudpsrc header-size=20 payload-size=1200"
 nmos.src_1 !
 'video/x-raw(memory:NVMM), width=1920, height=1080, format=UYVP, framerate=60/1' !
 queue ! nvvideoconvert ! nvv4l2h265enc ! h265parse !
 mpegtsmux alignment=7 ! srtsink uri=srt://10.0.0.1:10001

SRTST 2110

nvv4l2h265enc

srcsink

16

Deploying Them All Together

Each of these three Media Nodes is one of our GStreamer pipelines, connected via ST 2110 and NMOS

Orchestrating GStreaming Pipelines

17

SMPTE Media Types
ST 2110 -20, -30, -40

• SMPTE ST 2110 specifies standards for video, audio and ancillary data formats

• Raw video can use rtpvraw and raw audio can use rtpL24 (24bit) or rtpL16 (16bit)

• What about Ancillary Data?

• How is Ancillary Data stored and streamed in GStreamer?

• GstVideo.AncillaryMeta introduced in GStreamer 1.24

• Contains all the fields for Ancillary data as specified by SMPTE 291

• Propagates through the pipeline, till buffer is unreferenced

• If video streamed over IP via RTP packets, the metadata is lost

• SMPTE ST 2110-40 specifies the rules for transporting Ancillary Data over IP

• This includes format of the RTP packets which is done by reference to RFC 8331, in the same way that ST 2110-20 for video references
RFC 4175, which is what the OSS rtpvraw(de)pay implement.

• However, no means currently in GStreamer to packetize Ancillary Data into RTP

https://gstreamer.freedesktop.org/documentation/video/gstvideoanc.html?gi-language=python#GstAncillaryMeta
https://gstreamer.freedesktop.org/documentation/video/gstvideoanc.html?gi-language=python#GstAncillaryMeta

18

SMPTE Media types
ST 2110 -20, -30, -40

We introduce rtpsmpte291 payloader/depayloader and a corresponding videoancmux

SMPTE 291 is the Ancillary Data Standard used in ST2110-40

Video src

src

Ancillary Src

src

rtpvrawdepay

sink src

rtpsmpte291
depay

sink src

videoancmux

sink

sink

src
Video buffer with

Ancillary data

tee

src
sink

src

Ancillary Sink

sink

Video sink

sink

rtpvrawpay

sink src

rtpsmpte291
pay

sink src

Video buffer with
Ancillary data

Over IP

19

Ancillary Streaming in Action
SMPTE ST2110-40

2020

NVIDIA NIM

• Text, image, video and audio language models

• Optimized inference engines

• Industry-standard APIs

• Pre-configured containers for simplified deployment

• Blueprints for creating and deploying generative AI
applications

Inference Microservices Inference
Microservice

Optimized AI
Model

Simple
Deployment

21

Using NIMs in GStreamer Pipelines
AI For Live Media

Audio
ST 2110-30

4K Video
ST 2110-20

Virtual Cameras
Detection & Crop

Format Conversion
Media Gateway

Tagging
Person Recognition

Conforming
Super Res

Switching
Production Switcher

Transcription
Riva ASR NIM

Live Transcript Search

Live Studio
On Premises

Closed Captioning
Multi-language ASR

Display
ST 2110

22

Backend

Audio Transcription
AI For Live Media

• Back-end app container - Python

• PyGObject to use GStreamer

• Riva Python client to talk to the NIM

• Flask for server-sent events (SSE)

1. Pipeline now has an AppSink that emits “new-sample”
callbacks in which we aggregate and enqueue the audio
buffers

2. Riva client thread dequeues the audio buffers and sends to the
Riva ASR NIM, and enqueues the returned transcript data

3. The server-sent event generator dequeues the transcript data
and delivers it to the web UI

nvdsudpsrc

src

audioconvert

srcsink

appsink

sink

ST 2110-30 audio network
stream

Audio Buffers

Transcript
Data

SSE
Generator

Riva ASR NIM

HTTP Streaming
Response

gRPC

Frontend

HTML, CSS, JavaScript

Browser

HTTP

Riva Client
Thread

23

AI Virtual Cameras
Person detection, face recognition, super-resolution

Live ST 2110 source – 4k (3840 x 2160)

Cut-outPerson detection

Jensen Huang

Face recognition

Virtual ST 2110 cameras – HD (1920
x 1080)

Super-res

24

AI Virtual Cameras
Person detection, face recognition, super-resolution

• Input

• DeepStream nvdsudpsrc

• Person detection

• PyTorch YOLOv5

• Real-time, 20ms per 4k frame on NVIDIA L40S

• Face recognition

• PyTorch ArcFace + embeddings

• 2 seconds

• Cut-out

• DeepStream nvvideoconvert

• Super resolution

• RTX Video

• <3ms per frame

• Output

• DeepStream nvdsudpsink

nvdsudpsrc

src

nvvideoconvert

srcsink

appsink

sink

ST 2110-20 video network
stream

nvvideoconvert

srcsink

nvdsudpsink

sink

ArcFaceYOLOv5

ST 2110-20 video network
streams

src-crop

rtxvideo

srcsink

RTX Video

x3 x3 x3

x3

25

Get Started
Anything… Anywhere…

Choose your abstraction:

• Bare Metal: Use Rivermax

• Prebuilt framework: Use GStreamer and DeepStream.

Anywhere on any device:

• Intel/AMD x86_64 → Server, workstations and cloud

• ARM aarch64 → Embedded, edge and cloud

For AI ready, container orchestrated system
 → Use Holoscan for Media!

Questions?

26

	Slide 1: Hardware Accelerated Live Broadcasting
	Slide 2: Hardware Accelerated Live Broadcasting
	Slide 3: Serial Digital Interface (SDI)
	Slide 4: IP Transition
	Slide 5: Hardware Accelerated Live Broadcasting
	Slide 6: DeepStream and Rivermax
	Slide 7: DeepStream NvDsUdp Plugin
	Slide 8: DeepStream NvDsUdp Plugin
	Slide 9: DeepStream NvDsUdp Plugin
	Slide 10: DeepStream NvDsUdp Plugin
	Slide 11
	Slide 12: Chaining them together
	Slide 13: Simple ST 2110 video streaming
	Slide 14: GPU-Accelerated Processing
	Slide 15: GPU-Accelerated Transcode
	Slide 16: Deploying Them All Together
	Slide 17: SMPTE Media Types
	Slide 18: SMPTE Media types
	Slide 19: Ancillary Streaming in Action
	Slide 20: NVIDIA NIM
	Slide 21: Using NIMs in GStreamer Pipelines
	Slide 22: Audio Transcription
	Slide 23: AI Virtual Cameras
	Slide 24: AI Virtual Cameras
	Slide 25
	Slide 26

