< NVIDIA.

Hardware Accelerated Live Broadcasting

Johan Jino, Gareth Sylvester-Bradley | GStreamer Conference 2025

Hardware Accelerated Live
Broadcasting

Why the need for Hardware Acceleration?

Look at the Data Rate!
» Typical H.265 1080p60 stream is around 5-10Mb/s

* Uncompressed 1080p60 stream, 10bit, 4:2:2 subsampling is
2.5Gb/s

» 250x higher than typical compressed streams!
» Single 4k60 streams go above 10Gb/s

» Professional production facilities need support for multiple
uncompressed video streams at high res and frame rate

But why do professional broadcast/live production industry need
uncompressed streams?

* Quality matters through multiple hops in production. No
encode/decode loss.

* Minimize latency. Encoding/Decoding adds latency between
every transmission. Multiple hops, this accumulate.

2 <ANVIDIA I

Serial Digital Interface (SDI)
Standardized by SMPTE

* Uncompressed unencrypted digital video signal

* First introduced in 1989 with regular refreshes until 2015
» 3G-SDI (2006) 3Gb/s 1080p60 is mostly used

* A lot of production still using 1080 interlaced cameras

* Multi-camera lock/sync, audio & ancillary data with same
connectors

3 &ANVIDIA I

IP Transition

Technology SMPTE ST 2110

Image Quality Excellent Good Excellent
Bandwidth 3-12 Gb/s 90 to 350 Mb/s 1 to 50 Gb/s (8K)
Network Type SDI 1to 10 Gb/s 10 to 400 Gb/s
Synchronization Genlock Possible PTP
Quality
==SD|
o T AN AN AT AV \ = Scalability - Ease of use =—NDI
ST-2110 (2018)
ST-2110
(Today)
Latency Bandwidth

4 NVIDIA.

Hardware Accelerated Live Broadcasting
Broadcasting of Uncompressed ST 2110 Streams with GStreamer leveraging NVIDIA GPUs and NICs

» ST 2110 operates by sending media streams over IP networks, like how data travels on the internet, but with broadcast-
grade precision.

* Why use GStreamer in between?
* Brings advanced media applications and ease-of-use
* Consistent high-level programmatic APIs (C and Python) for plugins

» Ability to add own custom plugins and app integration =

~gstreamer

* What is needed for GStreamer to deliver full ST 2110 and more:
* Packet pacing -> NvDsUdp
» Hardware Optimised-> Also NvDsUdp
* Dynamic reconfigurability -> NvDsNmosbin

* Ancillary Data Streaming -> rtpsmpte291pay/depay

highlighted are NVIDIA built GStreamer plugins/elements 5 <4 NVIDIA I

DeepStream and Rivermax

DeepStream Extends GStreamer via plugins

GPU accelerated filter elements

Efficient buffer passing between elements
Integrates with NVIDIA Al toolkits

SMPTE ST 2110 source and sink elements

NMOS support library
Uses Rivermax for optimized networking

Rivermax is an optimised networking SDK for i e M
media streaming ////Té N
i sERazziaicih e 0T i R] ,

API for ST 2110 Tx and Rx on COTS NICs, e.g. ConnectX-6Dx T . %E:E [l
Provides highly optimised network transfers
Used by DeepStream NvDsUdp plugin

<

NVIDIA.

DeepStream NvDsUdp Plugin

GStreamer plugin for hardware-accelerated (Rivermax-enabled)
transport that replaces generic GstUdp src/sink.

Like GstUdp but with built-in rtppay and rtpdepay*
Direct GPU-to-NIC memory transfers using kernel bypass
Packet paced according to SMPTE ST 2110

Benefits:

NVIDIA * Currenly only for raw video and audio : CUIDIA

DeepStream NvDsUdp Plugin

GStreamer plugin for hardware-accelerated (Rivermax-enabled)
transport that replaces generic GstUdp src/sink.

Without Rivermax With Rivermax

Application

Like GstUdp but with built-in rtppay and rtpdepay* Application

Direct GPU-to-NIC memory transfers using kernel bypass DED”D”E'] - D'EEE'”] e

Packet paced according to SMPTE ST 2110 CPU Hest Memory CPU_ Host Memory

]
Trigger : ; Trigger
1 1

Benefits:

Supports full ST 2110, which constrains some RTP packet headers more than the P— 'E e
base RFC 4175 (rtpvraw) GPU Network GPU Network

More performant than single-threaded implementation of the OSS payloader
which isn’t sufficiently performant for 4k60,

Takes advantage of Rivermax’s header-data split feature where payload goes 5 ;
to/from the GPU but headers are handled on the CPU. D% _____ = ; Dfﬁ _______ . 5

NVIDIA * Currenly only for raw video and audio . CUIDIA

DeepStream NvDsUdp Plugin

GStreamer plugin for hardware-accelerated (Rivermax-enabled)
transport that replaces generic GstUdp src/sink.

Without Rivermax With Rivermax
Like GstUdp but with built-in rtppay and rtpdepay Application Applicatior
Direct GPU-to-NIC memory transfers using kernel bypass O e 0 g
Packet paced according to SMPTE ST 2110 S0 L e CPU_ Host Memory =
o : ©
Benefits: 5 :
Lower CPU Utilization —10Gb/s 85% of 1 Core Vs. 5% of 1 Core with - / e
Rivermax. (10Gb/s = 1 4k60 uncompressed stream) GPU Network GPU Network

Utilize NIC HW accelerators to increase performance and simplify the
solution i.e. RTP header insertion/stripping

Reduced host memory to GPU memory copy, allowing higher throughput.

NVIDIA * Currenly only for raw video and audio ; CUIDIA

DeepStream NvDsUdp Plugin Video buffer

Technical Deepdive

» GStreamer plugin for hardware-accelerated (Rivermax-enabled)
transport that replaces generic GstUdp src/sink.

* Like GstUdp but with built-in rtppay and rtpdepay*
* Direct GPU-to-NIC memory transfers using kernel bypass
* Packet paced according to SMPTE ST 2110

» Benefits:]|||||||||||

o Jitter free transmission

|
|
|
|
|
|
|
|
v

* Inter Packet Gap for 4K can be < 1us. Transmission done asynchronously in
NIC HW ensures this target can be met.

RTP Packets

<3

I'\VIDIA * Currenly only for raw video and audio PR — I

NMOS with GStreamer - NvDsNmosBin

Networked Media Open Specification

* NMOS provides APIs for discovery, registration and control of ST 2110
and other media over IP networks

* NvdsNmosBin element bring this easy configurability to GStreamer

* |Instantiates senders/receivers within pipelines and updates parameters
on-the-fly using NMOS callbacks

» Uses GStreamer bins and ghost pads to dynamically configure and
manage multiple sinks and sources

* Fully open source, built on top of other OSS including nvidia/nvnmos,
sony/nmos-cpp and other low-level C++ libs.

<3

NVIDIA.

~ .
nvdsnmosbin

Sender 1

Sender N

, | ,
nvdsudpsink N

t

rnvdsudpsrc M

i =

| ST 2110

]ST211O

11 <A NVIDIA. I

Chaining them together

Brining performance within easy abstractions

* Build simple GStreamer pipelines with just NvDsNmosbin sinks
and sources

GStreamer Applications

* Internally, it will create the correct NvDsUdp source and sink
elements based on media and encoding type

DeepStream

» Result: Leverage Rivermax performance and NMOS

: configurability with 1 simple open source GStreamer element!
NvDsUdp Plugin 5 Y PIE P

* Pass GPU (NVMM) buffers directly to other DeepStream

accelerated elements
Rivermax
* Or connect to any GStreamer elements, via nvvideoconvert to
GPUs NICs

move data from GPU to system memory

12 <A NVIDIA I

<3

NVIDIA.

gst-launch-1.0

nvdsnmosbin name=nmos
sink_1::sdp=file:///example.sdp

Simple ST 2110 video streaming

sink_1: :nvdsudpsink—desc="nvdsudpsink payload-size=1220 packets-per-line=4"

videotestsrc pattern=19 |

'video/x-raw, width=19206, height=1086, format=(string)UYVP, framerate=60/1"' !

queue !
nmos.sink 1

(")

videotestsrc

queue

D

NIM|O|[S]

—

) (

nvdsnmosbin

ST 2110

13 <A NVIDIA. I

GPU-Accelerated Processing

Q gst-launch-1.0

N|M|O[S] nvdsnmosbin name=nmos
src_1::sdp=file:///example.sdp
src_1::nvdsudpsrc-desc="nvdsudpsrc ..
sink_1::sdp=file:///example.sdp

N sink_1: :nvdsudpsink-desc="nvdsudpsink ..

I

'video/x-raw(memory :NVMM), width=1920, height=1080, format=UYVP, framerate=60/1"' '!

o

nvdsnmosbin NnMos.src_

queue !
nmos.sink_1

queue ! nvvideoconvert flip-method=rotate-180 !

'video/x-raw, width=1920, height=1080, format=UYVP, framerate=60/1"' !

<3

NVIDIA.

ST 2110 ST 2110

VYIdIAU
NVIDIA

nvvideoconvert

<ANVIDIA. I

<3

NVIDIA.

D

NIM|O[S]

GPU-Accelerated Transcode

gst-launch-1.0

nvdsnmosbin name=nmos
src_1::sdp=file:///example.sdp
src_1::nvdsudpsrc-desc="nvdsudpSrcC header-size=20 payload-size=1260

nmos.src_1 |

'video/x-raw(memory :NVMM), width=1920, height=1080, format=UYVP, framerate=60/1"' !

queue ! nvvideoconvert ! nvv4l2h265enc ! h265parse !
mpegtsmux alignment=7 ! srtsink uri=srt://10.0.0.1:1000T

-

nvdsnmosbin

rnvv4|2h265enc

-

srtsink

ST 2110

SRT

15 <A NVIDIA. I

S

NVIDIA.

Deploying Them All Together

Each of these three Media Nodes is one of our GStreamer pipelines, connected via ST 2110 and NMOS

NVIDIA Holoscan for Me: X |

C @ © & ° 192.168.102.236

&
@ NVIDIA Holoscan for Media Untitled v

NVIDIA

«

COLOR BARS
v Available
.MPTE 2110-20 1080P60 n

cc5f244d-946¢c-57ae-ach...

03e5e93a-7712-5a3f-90...

21b73689-bea9-5a56-8e...
ROTATE VIDEO

ROTATE THE VIDEO (-]

18f964c8-7865-5645-95...

92b7507e-c2f4-567e-b4... ROTATE THE VIDEO

Color Bars

Rotate Video

SRT Gateway

, SRT GATEWAY
> Unavailable (1)

[- | .. SMPTE 2110-20 108060

110% e ¥ iINn 60D @

PROPERTIES

NvDsNmosBin SRT gateway - SMPTE 2110-20
108060

ID
8fcb9014-cbe1-558e-9819-7f99¢c372e9c3

Modified
2023-09-15 15:24:56.064 +00:00

Label
NvDsNmosBin SRT gateway - SMPTE 2110-20
108060

Description

Disabled

Transport

16

NVIDIA.

SMPTE Media Types

SMPTE ST 2110 specifies standards for video, audio and ancillary data formats
Raw video can use rtpvraw and raw audio can use rtplL24 (24bit) or rtpL16 (16bit)
What about Ancillary Data?

How is Ancillary Data stored and streamed in GStreamer?
introduced in GStreamer 1.24
Contains all the fields for Ancillary data as specified by SMPTE 291
Propagates through the pipeline, till buffer is unreferenced
If video streamed over IP via RTP packets, the metadata is lost

SMPTE ST 2110-40 specifies the rules for transporting Ancillary Data over IP

This includes format of the RTP packets which is done by reference to RFC 8331, in the same way that ST 2110-20 for video references
RFC 4175, which is what the OSS rtpvraw(de)pay implement.

However, no means currently in GStreamer to packetize Ancillary Data into RTP

NVIDIA. b Svion

https://gstreamer.freedesktop.org/documentation/video/gstvideoanc.html?gi-language=python#GstAncillaryMeta
https://gstreamer.freedesktop.org/documentation/video/gstvideoanc.html?gi-language=python#GstAncillaryMeta

SMPTE Media types
ST 2110 -20, -30, -40

We introduce rtpsmpte291 payloader/depayloader and a corresponding videoancmux

SMPTE 291 is the Ancillary Data Standard used in ST2110-40

rtpvrawpay Video sink 1
. _ tee / J
Video buffer with
Ancillary data f 1 .
\ rtpsmpte291 Ancillary Sink

pay

\

/ Over |P

Video src rtpvrawdepay
\\ videoancmux

rAnciIIary Src 1 rrtpsmpte291
depay /

/
/
-)- -/

Video buffer with
-"") Ancillary data

/
/

<3

I'I\IIDIA 18 <ANVIDIA I

Ancillary Streaming in Action

rMec X +

O & Not Secure &2 hi 192.168.20.132 : Streams ,"_1-3, . Q + Add Stream Q¥ Refresh

Untitled v

ROI-INJECTOR

ANC DATA
RX:SRC_2 (RX.LOCAL)

1080P30 VIDEO

RX:SRC_O (RX.LOCAL) stream |

RX:SRC_1 (RX.LOCAL) L 1920x1080

= A
| . DATA RECEIVER .0 ROI OVERLAYED VIDEO E.‘ q

stream?Z2

1920x 1080

v - y
- A o r
. . r -

__ . -
) - il . N .
r r - '-..\ ' by -
w 4 /
-
,/ r -
4

- .
- E -

NVIDIA. Y o

NVIDIA.

NVIDIA NIM

20

Inference
Microservice

Text, image, video and audio language models

Optimized inference engines
Industry-standard APIs
Pre-configured containers for simplified deployment

Blueprints for creating and deploying generative Al
applications

O A\

\
¢

AN
XXX
XXX
AN
XX
o
AN
XX,
00%0000
0020000 ¢

¢
’0
\
¢
’0
AA

¢
0’0
A
AA
AR
AR
0’000
0.0
¢

»
XX
AavaY

Optimized Al

Simple
Deployment

{1

4K Video
ST 2110-20

Using NIMs in GStreamer Pipelines
Al For Live Media

-

@ -

Format Conversion
Media Gateway

5--amm)

’ <

Conforming

Virtual Cameras
Detection & Crop

N

p

Tagging

Person Recognition

Super Res ‘ E
Switching Display
Production Switcher ST 2110

> %

Audio
ST 2110-30

<3

NVIDIA.

S

\
g

Transcription
Riva ASR NIM

\

>

Closed Captioning
Multi-language ASR

Live Studio
Live Transcript Search On Premises

21 <A NVIDIA. I

Audio Transcription
Al For Live Media

* Back-end app container - Python
* PyGObject to use GStreamer
* Riva Python client to talk to the NIM

* Flask for server-sent events (SSE)

1. Pipeline now has an AppSink that emits “new-sample”
callbacks in which we aggregate and enqueue the audio

buffers

2. Riva client thread dequeues the audio buffers and sends to the
Riva ASR NIM, and enqueues the returned transcript data

3. The server-sent event generator dequeues the transcript data
and delivers it to the web Ul

<3

NVIDIA.

ST 2110-30 audio network
stream

audioconvert

Audio Buffers

Riva Client
Thread

Riva ASR NIM

Transcript SSE
Data Generator

Backend

Browser

Frontend

RIVA Realtime Content Tagging and Search

I ITTF Bearck historical transcripts.]
documented Rwanda Ss extensive support of the M23, providing weapons, providing expertise.

HTML, CSS, JavaScript

HTTP Streaming
Response

ll
civilian areas summary executions

22

<ANVIDIA. I

Al Virtual Cameras

Person detection, face recognition, super-resolution

Virtual ST 2110 cameras — HD (1920
Live ST 2110 source — 4k (3840 x 2160) x 1080)

Person detection Face recognition Super-res

23 <A NVIDIA.

Al Virtual Cameras

Person detection, face recognition, super-resolution

Input
* DeepStream nvdsudpsnrc

Person detection
* PyTorch YOLOvV5
* Real-time, 20ms per 4k frame on NVIDIA L40S

Face recognition
* PyTorch ArcFace + embeddings

» 2 seconds

Cut-out
* DeepStream nvvideoconvert

e Super resolution

» RTX Video

* <3ms per frame

Output
* DeepStream nvdsudpsink

O

ST 2110-20 video network
stream

X3 src-crop

nvvideoconvert

X3

nvvideoconvert

YOLOvVS

N

RTX Video

ArcFace

X3

X3

streams

ST 2110-20 video network

24 <ANVIDIA I

Get Started
Anything... Anywhere...

Choose your abstraction:
* Bare Metal: Use Rivermax
* Prebuilt framework: Use GStreamer and DeepStream.

Anywhere on any device:
* Intel/AMD x86 64 —> Server, workstations and cloud
* ARM aarch64 - Embedded, edge and cloud

For Al ready, container orchestrated system
- Use Holoscan for Media!

Questions?

n‘"DlA 25 <ANVIDIA I

< NVIDIA.

	Slide 1: Hardware Accelerated Live Broadcasting
	Slide 2: Hardware Accelerated Live Broadcasting
	Slide 3: Serial Digital Interface (SDI)
	Slide 4: IP Transition
	Slide 5: Hardware Accelerated Live Broadcasting
	Slide 6: DeepStream and Rivermax
	Slide 7: DeepStream NvDsUdp Plugin
	Slide 8: DeepStream NvDsUdp Plugin
	Slide 9: DeepStream NvDsUdp Plugin
	Slide 10: DeepStream NvDsUdp Plugin
	Slide 11
	Slide 12: Chaining them together
	Slide 13: Simple ST 2110 video streaming
	Slide 14: GPU-Accelerated Processing
	Slide 15: GPU-Accelerated Transcode
	Slide 16: Deploying Them All Together
	Slide 17: SMPTE Media Types
	Slide 18: SMPTE Media types
	Slide 19: Ancillary Streaming in Action
	Slide 20: NVIDIA NIM
	Slide 21: Using NIMs in GStreamer Pipelines
	Slide 22: Audio Transcription
	Slide 23: AI Virtual Cameras
	Slide 24: AI Virtual Cameras
	Slide 25
	Slide 26

