
Tools to profile a video encoder

Oct 23rd, 2025 - London – Diego Nieto & Rubén González

24/05/2022

Index

Why profiling our encoder?

Main stats

Comparing encoders

End2end latency

Next steps

Questions

Why profiling
our encoder?

Why profiling our encoder?

Profiling

From:

/GstPipeline:pipeline0/GstEncoderStats:encoderstats0: last-message = Encoder: flulcevch264enc
Output size: 597 KB
Bitrate: 1839.997 kbps
Processing time: 168 ms
CPU: 0.01 s
VMAF: 97.432
Encode latency: 200.511 ms

To:

/GstPipeline:pipeline0/GstEncoderStats:encoderstats0: last-message = Encoder: flulcevch264enc
Output size: 549 KB
Bitrate: 1831.930 kbps
Processing time: 14 ms
CPU: 0 s
VMAF: 95.001
Encode latency: 13.561 ms

Profiling: the activity of collecting important
and useful details about someone or something

Main stats

Encoding stats
Main metrics

● Bitrate

● Encode time: Speed/Time/Resources: CPU/GPU

● Latency

● Quality

Main stats

Encoding stats
Encoding time

● CLI tools:
○ htop
○ nvtop
○ Time (User time + System time) / rusage
○ Measure-command (Windows)

● GStreamer
○ GST_DEBUG="GST_TRACER:7" GST_TRACERS="stats;rusage" \

GST_DEBUG_FILE=trace.log …
○ Problem: What if we need to aggregate external threads? E.g. lcevc
○ Proposal: An element that aggregates these timings in an isolated thread

There are two halves to the latency problem. There is latency at the decoder and latency at the encoder. --tune zerolatency removes latency from both sides.

 x264
x265

Main stats

Encoding stats
Encode latency: The delay between input and output during encoding, often critical in real-time
applications.

Encoding stats

https://x265.readthedocs.io/en/stable/cli.html#cmdoption-tune
https://x265.readthedocs.io/en/stable/cli.html#cmdoption-tune

Main stats

Encoding stats
Encode latency

● What happens whether the encoder needs to receive
several frames before to output a buffer?

○ GST_TRACERS
■ Problem: not accurate results (when

queues inside and not 1-input 1-output)

○ Proposal: add probes in both sink and src pads to
measure it

Main stats

Encoding stats

What about quality?

Main stats

Encoding stats
Quality metrics

Reference metrics
● PSNR: old well know. Good for compression
● SSIM: structural, luminance and contrast
● VMAF: machine learning based. Extracts both temporal and spatial features

Non reference metrics
● Brisque

Applying reference metrics, e.g. vmaf, requires to decode the data beforehand. Proposal: what if we
use the reconstructed frame from the encoding process?

Main stats

Encoding stats

How to gather all these stats to compare videos in real
time encoding?

Comparing
encoders

Comparing encoders

github.com/fluendo/gst-plugins-rs/pull/4 → WIP

Comparing encoders

videostats plugin

DEMO!

gst-launch-1.0 \
 filesrc location="/home/dnieto/Downloads/tears_of_steel_1080p.mov" ! \
 qtdemux name=demux demux.video_0 ! \
 queue ! \
 decodebin3 ! \
 videoconvertscale ! \
 capsfilter caps=\"video/x-raw,aspect-ratio=1/1,framerate=24/1\" ! identity sync=true ! \
 tee name=tee \
 tee.src_0 ! video-encoder-stats encoder=\"x264enc bitrate=1024 tune=zerolatency speed-preset=ultrafast threads=4 key-int-
max=256 b-adapt=false vbv-buf-capacity=120\" name=vs0 vmaf-stats=false \
 tee.src_1 ! video-encoder-stats encoder=\"openh264enc bitrate=1024000 complexity=low rate-control=bitrate background-
detection=false scene-change-detection=false gop-size=256\" name=vs1 decoder="h264parse ! avdec_h264" ! fakesink \
 video-compare-mixer split-screen=true backend=CPU name=mixer \
 vs0.src ! h264parse ! avdec_h264 ! mixer.sink_0 \
 vs1.decoder_src ! mixer.sink_1 \
 mixer. ! autovideosink -v

Comparing encoders

vmaf (MR #9757)

http://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/9757

Comparing encoders

What to do with all these data?

Comparing encoders

Multimedia-benchmark

● Supports multi-video benchmarking:
○ Local source
○ Videotestsrc
○ Google Drive sources

● Runs the following encoders in GStreamer:
○ x264, x265, openh264, fluendo LCEVC H.264

● Gathers FFmpeg VMAF results of the previous encoding
● Extracts the bitrate from the encoded file
● Process all results combining the data of all codecs to be analyzed and

plotted
● Provides a Jupyter notebook to easily analyze the data

Comparing encoders

Input yml setup

End2end latency

End2end latency

End to end latency
How to measure the end two end latency?

Screen capture device to compare clocks
● Easy way for embedded environments

Problem:
● expensive external devices or manual capture which is setup not very accurate
● only works on environments where network is not involved

End2end latency

End to end latency
How to measure the end two end latency?

Burn QR timestamps
● https://github.com/SNS-JU/6gxr-latency-clock
● There are six timestamps recorded. The relevant one is the sixth. This is the time the frame

will be displayed as 64-bit nanoseconds since the unix epoch (realtime).
● Challenges to get those stats

○ Overwrite in the frame the encoded timestamps
○ Signal processing
○ Artifacts injection affects quality metrics

https://github.com/SNS-JU/6gxr-latency-clock

End2end latency

End to end latency
How to measure the end two end latency?

SEI Injection:
● NTP synchronization: GstNTPClock
● Custom metadata structure

static const guint8 FLU_TIMING_UUID[] = {0xCF, 0x84, 0x82, 0x78, 0xEE, 0x23, 0x30, 0x6C,0x92, 0x65, 0xE8, 0xFE,
0xF2, 0x00, 0x01, 0x02};

typedef struct
{
 GstClockTime source_time_ns;
 GstClockTime pre_encode_time_ns;
 GstClockTime post_encode_time_ns;
 GstClockTime pre_decode_time_ns;
 GstClockTime post_decode_time_ns;
} FluTimingMetadata;

GstVideoSEIUserDataUnregisteredMeta sei_meta =
gst_buffer_add_video_sei_user_data_unregistered_meta(buffer, (guint8*)FLU_TIMING_UUID,

End2end latency

End to end latency
How to measure the end two end latency?

SEI Injection
● Add pad probes for each element to fill the corresponding timestamp

((FluTimingMetadata*)sei_meta->data)->pre_encode_time_ns =
gst_clock_get_time(m_clock);

● Inject the SEI GST_H264_SEI_USER_DATA_UNREGISTERED

 sei_data = g_array_new(FALSE, FALSE, sizeof(sei_msg));
 g_array_append_vals(sei_data, &sei_msg, 1);
 sei_memory = gst_h264_create_sei_memory_avc(4, sei_data);
 g_array_unref(sei_data);
 g_assert(sei_memory);

 new_buffer = gst_h264_parser_insert_sei_avc(m_parser, 4, buffer, sei_memory);

End2end latency

End to end latency
How to measure the end two end latency?

SEI Injection
● In the server side: send the encoded data through the network
● In the client side: get the metas after the parser
● Calculate the difference between the timestamps

End2end latency

gst.wasm SEI injection to measure end2end latency

Next steps

Next steps

How to evolve?

● SEIs

SEI injection stats to allow network pipelines for metas
as UDUS (from manual to SEI Injection:
https://gitlab.freedesktop.org/gstreamer/gstreamer/-/iss
ues/3059

○ seiinjector: element to inject UDU from metas
in an abstract way. TBD

https://gitlab.freedesktop.org/gstreamer/gstreamer/-/issues/3059
https://gitlab.freedesktop.org/gstreamer/gstreamer/-/issues/3059

Next steps

How to evolve?

● Videostats
○ Use reconstructed frame for VMAF inputs
○ Use SEIs to work within the network

● Multimedia benchmark
○ Integrate and use videostats deeply
○ Compare different setups in a more automatic way

Questions?

	Tools to profile a video encoder
	Why profiling our encoder? Main stats Comparing encoders End
	Why profiling our encoder?
	Why profiling our encoder?
	Main stats
	Main stats
	Main stats (2)
	Main stats (4)
	Main stats (5)
	Main stats (6)
	Main stats (7)
	Comparing encoders
	Comparing encoders
	Comparing encoders
	Comparing encoders
	Comparing encoders (6)
	Comparing encoders (7)
	Comparing encoders
	End2end latency
	End2end latency
	End2end latency
	End2end latency
	End2end latency (2)
	End2end latency (3)
	End2end latency
	Next steps
	Next steps
	Next steps (2)
	Questions?

