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Hi, I am Julian

* From Spain

* Multimedia Team at Collabora since 2019

* GStreamer, PipeWire and WirePlumber developer

* julian.bouzas@collabora.com
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* Next generation multimedia daemon for

Linux to handle Video and Audio devices
- V4L2, Libcamera, ALSA, Bluetooth...
* Replaces PulseAudio

PipeWire
* Graph based design, like GStreamer

- Nodes (Elements) and Ports (Pads)

* External Session Manager

- Adaptable for any use-case
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¥ WirePlumber

Default Session Manager for Pipewire

- Without WirePlumber, PipeWire does not do anything

Daemon that instructs PipeWire how to operate

- Configures devices: Ports, Profiles, Volumes...
- @Grants permissions to applications

- Links objects to form the processing graph (Policy)

Extensible, modular and extremely

configurable

- Lua scripts

- JSON configuration

Open First
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Current Status

* Included by default in major Linux distributions

Fedora, Ubuntu, Debian, Arch Linux...

e Also used in SteamOS from Valve Corporation for the Steam Deck

* Latest stable versions

PipeWire 1.4.8 (Initial release 2017)
WirePlumer 0.5.12 (Initial release 2019)

 Still maturing...
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Permissions in PipeWire

* Can be set on any object for any Application

* Permissions Types:
- Read: Clients can see and receive data from objects
- Write: Clients and send data to objects

- Execute: Clients can configure objects
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Permissions Configuration

* Basic Configuration

- Same for all objects per client

Lua scripts for special cases:

- Flatpak: Based on portal permission store

- Snap: Based on client properties

Can conflict with configuration

Limited for complex use-cases, such as...
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Hide Echo Cancellation

* Echo Cancel module shows
up as both Input and Output

filters

* Confusing for some users
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New Permission Manager API

e Can be attached to clients

- Only 1 permission manager per client

* Updates permissions on attached clients
every time an object of interest appears

* Extend configuration

* Fallback mechanism to avoid conflicts using
Event Hooks

- Configuration — Flatpak — Snap — Default
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Performance limitations

* ~25ms since a stream is added until the target device is found

- More than the default PipeWire quantum ~20ms

* Short event sounds might not play well

- Example: libcambera if the PipeWire graph has monitor nodes (pavucontrol)

* Bottlenecks found with perf:

- Serialization of object properties into Lua tables

- Event hooks collection
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Properties into Lua Tables

* Properties are automatically converted into Lua tables

- Lots of conversions from C WpProperties into Lua Tables back and forth

* Not needed in many Lua scripts

- We only want to access 1 or 2 properties in most cases
* Solution: Add new Lua API for WpProperties to avoid

conversions
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node_name = node.properties["node.name"]

node.properties["media.class"]

s = node.properties
-

properties["node.name"]

node_properties["media.class"]

s = node:get_properties ()

e_properties:get ("node.name")

media_class = node:get_property ("media.class")

* ~4ms improvement (~18% faster)
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Event Hook Collection

* Event Hooks are small pieces of code called on specific events

Example: Link a stream node with the default device when a stream is added

* They can have dependencies on other hooks

* Events collect and reorder hooks every time they are sent

Too many unnecessary reordering
* Solution: Reduce overhead by only reordering the hooks on

registration
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Event Hook Stack (Registration Order) Event Hook Collection

Link-stream-hook
T | EAfter:nfa “
i Send-notification-hook : | Events: stream-added a
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i Events: stream-added 1 [ 1
i Link-stream-hook ]
T : | After: n/a
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' After: n/a v | 1 stream-removed
i Events: stream-removed | L /
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Event Hook Stack (Dependency Order)

Event Hook Collection

Link-stream-hook

After: nfa
Events: stream-added

Unlink-stream-hook

After: nfa
Events: stream-removed

Send-notification-hook

After: link-stream, unlink-stream
Events: stream-added, stream-removed
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Link-stream-hook '

After: nfa
Events: stream-added

Send-notification-hook b

After: link-stream, unlink-stream
Events: stream-added, stream-removed

Link-stream-hook ]

After: nfa
Events: stream-added

Send-notification-hook v

After: link-stream, unlink-stream
Events: stream-added, stream-removed

|

stream-added

stream-removed
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Current Node Concept

* No concept of Stream

Node == Stream

* Nodes can only receive or send data, but not both at the
same time

* The whole PipeWire graph is formed by multiple pairs of 2
Nodes linked together
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New Node Concept

Nodes can support multiple streams

Node != Stream

WirePlumber needs to work with streams instead of nodes

More similar to GStreamer

Node — Element

Stream — Pad

Easier to group streams together and treat them as a single unit

Easier to apply permission on objects of the same type
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Future

* Work on the above in the next coming months
* Aiming for a 1.0 release next year (hopefully)

* Small API changes if any

* Considering re-writing some things in Rust after 1.0

release
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Contributions

* Hosted on GitLab

- https://qgitlab.freedesktop.org/pipewire/wireplumber.qgit

* Documentation

- https://pipewire.pages.freedesktop.org/wireplumber

* You are welcome to join the community
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Thank you!
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