WirePlumber

Present Challenges And Future Directions

Julian Bouzas
Senior Software Engineer

GStreamer Conference 2025
London, UK C’ O
October 23rd - 24t

COLLABORA

Hi, I am Julian

* From Spain

* Multimedia Team at Collabora since 2019

* GStreamer, PipeWire and WirePlumber developer

* julian.bouzas@collabora.com

’O COLLABORA Open FirSt

2

COLLABORA
*O

* Quick Introduction

PipeWire

WirePlumber

* Challenges and Next Steps

Permission
Performance
Transition to Stream Support

Future

Open First

3

COLLABORA
*O

Introduction to PipeWire and
WirePlumber

* Next generation multimedia daemon for

Linux to handle Video and Audio devices
- V4L2, Libcamera, ALSA, Bluetooth...
* Replaces PulseAudio

PipeWire
* Graph based design, like GStreamer

- Nodes (Elements) and Ports (Pads)

* External Session Manager

- Adaptable for any use-case

’O COLLABORA Open First

5

¥ WirePlumber

Default Session Manager for Pipewire

- Without WirePlumber, PipeWire does not do anything

Daemon that instructs PipeWire how to operate

- Configures devices: Ports, Profiles, Volumes...
- @Grants permissions to applications

- Links objects to form the processing graph (Policy)

Extensible, modular and extremely

configurable

- Lua scripts

- JSON configuration

Open First

COLLABORA
*O

___ A e
music-player
Stream/Output/Audio
firefox-audio-playback firefox-video-capture
Steam/Input/Audio 5 Steam/Input/Video
: & : L 1 : |
' PIPEWIRE - ~— WIREPLUMBER |
: firefox-audio-capture I !
i Stream/Output/Audio i
Speakers Microphone Headphones Front Camera
Audio/Sink Audio/Source Audio/Sink Video/Source
= o T W

’O COLLABORA Open First

Current Status

* Included by default in major Linux distributions

Fedora, Ubuntu, Debian, Arch Linux...

e Also used in SteamOS from Valve Corporation for the Steam Deck

* Latest stable versions

PipeWire 1.4.8 (Initial release 2017)
WirePlumer 0.5.12 (Initial release 2019)

 Still maturing...

’O COLLABORA Open FirSt

8

COLLABORA
*O

Challenges and Next Steps

COLLABORA
O

Permission

Permissions in PipeWire

* Can be set on any object for any Application

* Permissions Types:
- Read: Clients can see and receive data from objects
- Write: Clients and send data to objects

- Execute: Clients can configure objects

’O COLLABORA Open FirSt

11

Permissions Configuration

* Basic Configuration

- Same for all objects per client

Lua scripts for special cases:

- Flatpak: Based on portal permission store

- Snap: Based on client properties

Can conflict with configuration

Limited for complex use-cases, such as...

’O COLLABORA Open FirSt

12

Hide Echo Cancellation

* Echo Cancel module shows
up as both Input and Output

filters

* Confusing for some users

’O COLLABORA Open FirSt

13

| APPLICATION Firefox S
s S
Firefox-playback Firefox-capture
Stream/Output/Audio Stream/Input/Audio
' PIPEWIRE :
i Echo-cancel-sink Echo-cancel-source
Audio/Sink Audio/Source
Echo-ca nclal-playback Echﬂ-canc;alﬂaptura
Stream/Qutput/Audio Stream/Input/Audio
: t
Speakers Microphone
Audio/Sink Audio/Source

COLLABORA
*O

Open First

14

| APPLICATION Firefox .
;'_;,'__~',_'_
Firefox-playback Firefox-capture
Stream/Output/Audio Stream/Input/Audio
v f
Loopback-sink (Speakers) Loopback-source (Microphone)
Audio/Sink Audio/Source

i i
Loopback-playback Loopback-capture
Stream/Qutput/Audio Stream/Input/Audio

COLLABORA
*O

!

Echo-cancel-sink

Audio/Sink

Echo-cancel-playback
Stream/Output/Audio

!

Speakers

T

Echo-cancel-source
Audio/Source

Echo-cancel-capture
Stream/Input/Audio

f

Microphone
Audio/Source

Open First

()

__

[e E ___ "" ____________________________________
Firefox-playback Firefox-capture
Stream/Output/Audio Stream/Input/Audio
' f
Loopback-sink (Speakers) Loopback-source (Microphone)
Audio/Sink Audio/Source
Loopback-playback Loopback-capture
; Stream/Cutput/Audio Stream/Input/Audio
' PIPEWIRE I |
Echo-cancel-sink Echo-cancel-source
Audic/Sink Audio/Source
Echo-cancel-playback Echo-cancel-capture
Stream/Output/Audio Stream/Input/Audio
I t
Speakers Microphone
Audio/Sink Audio/Source

’O COLLABORA Open First

16

New Permission Manager API

e Can be attached to clients

- Only 1 permission manager per client

* Updates permissions on attached clients
every time an object of interest appears

* Extend configuration

* Fallback mechanism to avoid conflicts using
Event Hooks

- Configuration — Flatpak — Snap — Default

’O COLLABORA Open First

17

COLLABORA
O

Performance

Performance limitations

* ~25ms since a stream is added until the target device is found

- More than the default PipeWire quantum ~20ms

* Short event sounds might not play well

- Example: libcambera if the PipeWire graph has monitor nodes (pavucontrol)

* Bottlenecks found with perf:

- Serialization of object properties into Lua tables

- Event hooks collection

’O COLLABORA Open FirSt

11C)

Properties into Lua Tables

* Properties are automatically converted into Lua tables

- Lots of conversions from C WpProperties into Lua Tables back and forth

* Not needed in many Lua scripts

- We only want to access 1 or 2 properties in most cases
* Solution: Add new Lua API for WpProperties to avoid

conversions

’O COLLABORA Open FirSt

20

node_name = node.properties["node.name"]

node.properties["media.class"]

s = node.properties
-

properties["node.name"]

node_properties["media.class"]

s = node:get_properties ()

e_properties:get ("node.name")

media_class = node:get_property ("media.class")

* ~4ms improvement (~18% faster)

’O COLLABORA Open First

21

Event Hook Collection

* Event Hooks are small pieces of code called on specific events

Example: Link a stream node with the default device when a stream is added

* They can have dependencies on other hooks

* Events collect and reorder hooks every time they are sent

Too many unnecessary reordering
* Solution: Reduce overhead by only reordering the hooks on

registration

’O COLLABORA Open FirSt

22

Event Hook Stack (Registration Order) Event Hook Collection

Link-stream-hook
T | EAfter:nfa “
i Send-notification-hook : | Events: stream-added a
After: link-stream, unlink-stream __________________ 1 ___________________ stream-added
i Events: stream-added, stream-removed ! e Lo
: Send-notification-hook
o : | After: link-stream, unlink-stream 'r
i Link-stream-hook | ' Events: stream-added, stream-removed |
After: n/a __
i Events: stream-added 1 [1
i Link-stream-hook]
T : | After: n/a
i Unlink-stream-hook 1 i Events: stream-added L
' After: n/a v | 1 stream-removed
i Events: stream-removed | L /
Send-notification-hook S

After: link-stream, unlink-stream
Events: stream-added, stream-removed

’O COLLABORA Open FirSt

23

Event Hook Stack (Dependency Order)

Event Hook Collection

Link-stream-hook

After: nfa
Events: stream-added

Unlink-stream-hook

After: nfa
Events: stream-removed

Send-notification-hook

After: link-stream, unlink-stream
Events: stream-added, stream-removed

COLLABORA
*O

Link-stream-hook '

After: nfa
Events: stream-added

Send-notification-hook b

After: link-stream, unlink-stream
Events: stream-added, stream-removed

Link-stream-hook]

After: nfa
Events: stream-added

Send-notification-hook v

After: link-stream, unlink-stream
Events: stream-added, stream-removed

|

stream-added

stream-removed

COLLABORA
O

Transition to Steam Support

Current Node Concept

* No concept of Stream

Node == Stream

* Nodes can only receive or send data, but not both at the
same time

* The whole PipeWire graph is formed by multiple pairs of 2
Nodes linked together

’O COLLABORA Open FirSt

26

New Node Concept

Nodes can support multiple streams

Node != Stream

WirePlumber needs to work with streams instead of nodes

More similar to GStreamer

Node — Element

Stream — Pad

Easier to group streams together and treat them as a single unit

Easier to apply permission on objects of the same type

’O COLLABORA Open FirSt

27

S
Firefox-playback Firefox-capture
Stream/Output/Audio Stream/Input/Audio
v f
Loopback-sink (Speakers) Loopback-source (Microphone)
Audio/Sink Audio/Source
Loopback-playback Loopback-capture
; Stream/Output/Audio Stream/Input/Audio
' PIPEWIRE ! f
Echo-cancel
Stream/Input/Audio
' t
Speakers Microphone
Audio/Sink Audio/Source

’O COLLABORA Open First

28

COLLABORA
O

Future

Future

* Work on the above in the next coming months
* Aiming for a 1.0 release next year (hopefully)

* Small API changes if any

* Considering re-writing some things in Rust after 1.0

release

’O COLLABORA Open FirSt

30

Contributions

* Hosted on GitLab

- https://qgitlab.freedesktop.org/pipewire/wireplumber.qgit

* Documentation

- https://pipewire.pages.freedesktop.org/wireplumber

* You are welcome to join the community

’O COLLABORA Open FirSt

31

CO

Thank you!

’O COLLABORA Open FirSt

32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

