
GStreamer in the Medical Simulation Environment
A project’s journey from Flash to WebRTC, from a monolithic pipeline to multiple pipelines.

Jeff Wilson

Thomas Goodwin

One goal. One mission.

Laerdal Medical is a world leader in healthcare education and resuscitation training. By using immersive technologies
and data-centric insights we can help to increase survival and improve healthcare quality. We empower lifesavers,

and healthcare workers, to help them save more lives.

SimCapture: CaptureNode
1. SimCapture Introduction

2. CaptureNode’s progression from Flash to WebRTC

3. Incorporating GStreamer for various sources

4. The progression from a monolithic pipeline to multiple pipelines via inters

5. Our First Plugin and Elements

6. Writing MP4s to S3 During Recordings

7. Handling Transient Sources

8. ONVIF Device Manager

9. Pain Point: C++ and GObject

SimCapture

SimCapture

Cloud Services

Client Site

CaptureNode

Audio/Video Signaling

CaptureNode: Flash Streaming

Capture Encode Mux &
Save

Sprites RTMP

CaptureNode: Flash to WebRTC

Capture Encode Sprites RTMPMux &
Save

GStreamer

Pipeline

appsrc h264parse rtph264pay tee webrtcbin

webrtcbinappsrc aacparse <transcode> rtpopuspay tee

…

CaptureNode: GStreamer Sources

Mux &
Save

SpritesGStreamer

Pipeline

appsink h264parse rtph264pay tee webrtcbin

webrtcbinappsink aacparse <transcode> rtpopuspay tee

<vsource>

<asource>

<vencode>

<vencode>

…

CaptureNode: GStreamer Sources
• Most common input sources:

• Network security cameras & frame grabbers
• USB cameras & frame grabbers
• Custom screen recorder application

• Other sources exist such as NDI

• Device configuration & discovery written in C# while capture written in C/C++

• Mixing between GStreamer sources and legacy sources caused some issues

• Re-acquiring inputs that were lost is complicated

Pipeline

From Monolithic to Multiple Pipelines

Source Bin Recording Bin

Sprite Gen. Bin

V(+A)

V

Source Bin Recording Bin

Sprite Gen. Bin

V(+A)

V

Note: Live Stream Not Shown

From Monolithic to Multiple Pipelines

Source Segment Recorder Segment Local File Writer Segment

Network File Writer Segment

Sprite Gen. Segment

Recording?

Channel Recording

Note: Live Stream Not Shown

V(+A)

V

Source Bin Recording Bin

Sprite Gen. Bin

V(+A)

V

Our First GStreamer Plugin
• Simple concept:

• Sample a raw video feed down to an arbitrarily low frame rate.
• Concatenate the frames according to scale requirements
• Output the resulting JPEG

• As first experiences go, this went well.
• Tried videorate element but needed something simpler: framedrop.
• Gained experience with GstCheck/GstHarness

sprite_strip

videoconvert framedrop videoscale capsfilter frame_concat jpegenc

Handling Transient Sources
Situation:

A source device element streams into the channel processing pipeline, eventually encountering a connectivity
problem. GstBaseSrc emits EOS, pad task stops. You handled the EOS, saving the rest of the pipeline, but
toggling GstState of the source element does not resume the feed later. Now what?

Channel“Filtered” GstDeviceMonitor

GstBaseSrc depay All the thingsGstDeviceMonitor

Bus

Subscribe w/ Props

Device Props?

Subs.

+/- GstDevice
Get Element, Connect, Unblock, Play

Solution:
A Channel is assigned some device-specific identifiers. It subscribes to the monitor wrapper with both the usual filter
API and those properties. When the GstDeviceMonitor emits Device Added on the bus, the wrapper inspects the
device properties, compares to the subscriber list. If there is a match, the Channel is notified. The channel inserts
the Device’s element, unblocks, and resumes the stream.

ONVIF Device Monitor

• Began as a hackathon project

• Leverage existing ONVIF-RS
Project, extend our knowledge of
GStreamer+Rust

• Use WS-Discovery to detect
devices on the network

• Define a new authentication API
for DeviceMonitor’s GstBus

Hey, let’s replace capture inputs with FilteredGstDeviceMonitor!

(Option) Configure
Unicast Discovery

AuthenticationRequest

App Provider/FactoryGstBus

Reply(src, details)

DEVICE_ADDED

New GstDevice

Get Element
Add to Pipeline
Link Pads
Set GstState
…

Writing MP4s to AWS S3

1. Trimmed-down from our fork of the AWS S3 Sink C++ Element, implemented seek operations
1. Cache hit is a direct seek on the memory heap
2. Cache miss is an S3 download, seek, upload

2. Ported to Rust with the (1.1) cache hit logic (gst-plugins-rs !1641)
1. N=0, default behavior
2. N>=1, cache the first N parts
3. N<=-1, cache the tail N parts

Thank you: Arun Raghavan!

Header Slice Slice…

Part 1 Part 2

*C++ Variant: https://github.com/blinemedical/amazon-s3-gst-plugin

Pain Point: C++ and GObject
Lack of direct integration paths to synchronize memory management models can result in access.

• The obvious fix is addressing the reference counting issue but tracing the root cause can be daunting.

• Usual indication of a problem: callbacks and signals needing static methods or other mechanisms like std::function
pointers on the heap. When synchronization breaks, you get AVs here.

• One work-around we use is WeakReferenceWrapper<T, P>:
• T -> GstElement, GstBus, etc.
• P -> std::unique_ptr<T, GObjectFunctor<T>>

where GObjectFunctor is a struct operator() for unreffing the internal ref-counted pointer
• Mutex-guarded raw pointer maintained by g_object_weak_[ref/unref]
• Public Set()/Clear() for modifying the raw pointer
• Public AsRef() to get a reference-counted unique pointer scoped to the caller
• Protected virtual method for “I’ve been destroyed.”

Looking forward to a talk about a third-party solution later which shows some promise!

Thank you for
your efforts!

Links
• SimCapture

• awss3sink seeking MR

• gst-laerdallabs-rs – ONVIF discovery

