GStreamer in the Medical Simulation Environment

A project’s journey from Flash to WebRTC, from a monolithic pipeline to multiple pipelines.

Jeff Wilson

Thomas Goodwin

@ | aerdal

helping save lives

Laerdal

One goal. One mission.

| Laerdal
@ M | Ieral @ Laerdal Million Lives Fund

helping save lives helping save lives Foundation

Laerdal Medical is a world leader in healthcare education and resuscitation training. By using immersive technologies
and data-centric insights we can help to increase survival and improve healthcare quality. We empower lifesavers,
and healthcare workers, to help them save more lives.

A T T o L A

SimCapture: CaptureNode

SimCapture Introduction

CaptureNode’s progression from Flash to WebRTC

Incorporating GStreamer for various sources

The progression from a monolithic pipeline to multiple pipelines via inters
Our First Plugin and Elements

Writing MP4s to S3 During Recordings

Handling Transient Sources

ONVIF Device Manager

Pain Point: C++ and GObject

SimCapture

e -

‘Belect inputs for Resuscitation

Saturation signal low

Client Site

CaptureNode

SimCapture

— Audio/Video «---» Signaling

Cloud Services

Capture

CaptureNode: Flash Streaming

Encode Mux & m—> RTMP
Save

@ Lafrdal

helping save lives

Capture

CaptureNode: Flash to WebRTC

Encode GStreamer

Pipeline

h264parse rtph264pay

appsrc aacparse <transcode> rtpopuspay

webrtchin

webrtchin

CaptureNode: GStreamer Sources

GStreamer

Pipeline

<vsource> <vencode> appsink h264parse rtph264pay e webrtcbin

<asource> <vencode> appsink aacparse <transcode> rtpopuspay = webrtcbin

CaptureNode: GStreamer Sources

Most common input sources:
* Network security cameras & frame grabbers
* USB cameras & frame grabbers
» Custom screen recorder application

Other sources exist such as ND|
Device configuration & discovery written in C# while capture written in C/C++
Mixing between GStreamer sources and legacy sources caused some issues

Re-acquiring inputs that were lost is complicated

From Monolithic to Multiple Pipelines

Pipeline
Source Bin Recording Bin

Sprite Gen. Bin

Source Bin Recording Bin

Sprite Gen. Bin

Note: Live Stream Not Shown

@ Lafrdal

helping save lives

From Monolithic to Multiple Pipelines

Source Bin Recording Bin

L Sprite Gen. Bin

Channel Recording

Recorder Segment Local File Writer Segment
Recording?
Network File Writer Segment

@ Laerdal

Source Segment

)4

Sprite Gen. Segment

Note: Live Stream Not Shown v

Our First GStreamer Plugin

* Simple concept:
* Sample a raw video feed down to an arbitrarily low frame rate.
* Concatenate the frames according to scale requirements
* Qutput the resulting JPEG

» As first experiences go, this went well.
» Tried videorate element but needed something simpler: framedrop.
* Gained experience with GstCheck/GstHarness

sprite_strip

videoconvert framedrop videoscale capsfilter frame_concat jpegenc

Handling Transient Sources

Situation:

A source device element streams into the channel processing pipeline, eventually encountering a connectivity
problem. GstBaseSrc emits EOS, pad task stops. You handled the EOS, saving the rest of the pipeline, but
toggling GstState of the source element does not resume the feed later. Now what?

“Filtered” GstDeviceMonitor Channel

Subscribe w/ Props ‘
GstDeviceMonitor GstBaseSrc § depay All the things

+/- GstDevice
Device Props? » Get Element, Connect, Unblock, Play

Solution:

A Channel is assigned some device-specific identifiers. It subscribes to the monitor wrapper with both the usual filter
APl and those properties. When the GstDeviceMonitor emits Device Added on the bus, the wrapper inspects the
device properties, compares to the subscriber list. If there is a match, the Channel is notified. The channel inserts
the Device'’s element, unblocks, and resumes the stream.

<

ONVIF Device Monitor

Hey, let’s replace capture inputs with FilteredGstDeviceMonitor!

O lumeohq / onvif-rs

Code (Issues 15 i1 Pull requests 4

2 onvif-rs Public

Began as a hackathon project

Leverage existing ONVIF-RS
Project, extend our knowledge of
GStreamer+Rust

Use WS-Discovery to detect
devices on the network

Define a new authentication API
for DeviceMonitor’'s GstBus

App GstBus Provider/Factory

(Option) Configure
Unicast Discovery

Reply(src, details)

New GstDevice

Get Element
Add to Pipeline
Link Pads

Set GstState

DEVICE_ADDED

Writing MP4s to AWS S3
[=]

Part 1 Part 2

1. Trimmed-down from our fork of the AWS S3 Sink C++ Element, implemented seek operations
1. Cache hitis a direct seek on the memory heap
2. Cache miss is an S3 download, seek, upload

2. Ported to Rust with the (1.1) cache hit logic (gst-plugins-rs 1641)
1. N=0, default behavior
2. N>=1, cache the first N parts
3. N<=-1, cache the tail N parts

Thank you: Arun Raghavan!

*C++ Variant: https://github.com/blinemedical/amazon-s3-gst-plugin

Pain Point: C++ and GObject

Lack of direct integration paths to synchronize memory management models can result in access.

» The obvious fix is addressing the reference counting issue but tracing the root cause can be daunting.

» Usual indication of a problem: callbacks and signals needing static methods or other mechanisms like std::function
pointers on the heap. When synchronization breaks, you get AVs here.

* One work-around we use is WeakReferenceWrapper<T, P>:

T -> GstElement, GstBus, etc.

P ->std::unique_ptr<T, GObjectFunctor<T>>
where GObjectFunctor is a struct operator() for unreffing the internal ref-counted pointer

Mutex-guarded raw pointer maintained by g_object_weak_[ref/unref]
Public Set()/Clear() for modifying the raw pointer

Public AsRef() to get a reference-counted unique pointer scoped to the caller
Protected virtual method for “I've been destroyed.”

Looking forward to a talk about a third-party solution later which shows some promise!

Thank you for
your efforts!

)
-
S
—

() Laerdal

helping save lives

