
burn

A little case study on using GstAnalytics from Rust

GStreamer Conference 2025

23 October 2025

Sebastian Dröge <sebastian@centricular.com>

mailto:sebastian@centricular.com


Rationale

Most GstAnalytics code is C or Python

How well does it work from Rust?

How usable is burn?



Plan

burn-based YOLOX object detection inference element

Produces raw tensor metas for detections from video frames

YOLOX tensor decoder element

Converts raw tensors into relation metas



burn 

https://burn.dev

PyTorch-like deep learning framework in Rust 

Lots of computation backends (CPU / GPU / NPU based)

Model compiled & optimized for a specific backend

"Loaders" (codegen) for PyTorch, ONNX, ... models

https://burn.dev/


YOLOX element

Takes 640x640 (*) RGB input frames

Converts into planar internally

No suitable planar RGB format in GStreamer

3 function calls

Outputs input plus raw tensor meta

Wrapping of a 8400x85 (*) float matrix into a meta

Basically no code except for element boilerplate and caps negotiation



YOLOX tensor decoder element

Adds object detection and classification metas

100 SLOC algorithm, overall 500 SLOC

Comparison: C YOLOv9 tensor decoder 3x as big

Mostly because of C book-keeping

Can be autoplugged by tensordecodebin

Should also work with e.g. onnxinference

Output can be used by ioutracker , objectdetectionoverlay , etc.







Questions? Comments?

Code available at

https://gitlab.freedesktop.org/gstreamer/gst-plugins-rs/-/merge_requests/2347

https://gitlab.freedesktop.org/gstreamer/gst-plugins-rs/-/merge_requests/2347

