GStreamer for
audio distribution
at Sveriges Radio

Karl Johannes Jondell d
Christofer Bustad

sverigesadio

About Sveriges Radio (SR)

* SR is one of three public broadcasting companies in Sweden: SR, SVT, UR.
» This year celebrating 100 years on the air.

* Our primary medium is radio: terrestrial FM & DAB, IP based-distribution.

» / million listeners every week. Sweden’s population is 10.5 million.

» Radio channels: 4 national, 25 local, 7 special/niched channels (primarily digital-only).

* Public trust in SR is foundational and consistently measured high.
« Commercial and political independence.
* Mission to be innovative.

* Emergency preparedness mission.

sverigesadio

Our IP offerings

e Our platforms
* iOS/Android app
» sverigesradio.se

e 3dpa rty platforms Svenska kommunslogans

Svenska kommunslogans

* Linear
« Using HLS for our own platforms & some 374 party platforms.
* Using ICY for backwards compatibility and most 3 party platforms.
 HLS: 52 live streams with 24/7 content encoded in: AAC

 ICY: 37 live streams encoded in: AAC, mp3, FLAC, Opus = 15:00
* On-demand

* Podcasts, audio clips, catch up radio 14 \’(.5) m

« 3rdparty platforms

 Formats used: AAC, mp3 x@ LTJ 6, =

sverigesadio

In the beginning...

* There was a need for arenewed |IP based distribution system.
» At the crossroads: modernising existing solution or building new from open software.

* Requirements
« Containerised
e Hybrid cloud
* Redundancy
* Reusability
* Lower latency

In the "

Be gl'ln g

* Audio watermarking
* Broadcast processing

» We decided to use GStreamer (and Rust)!

sverigesadio

Pilot: HLLS

* Containerised setup

* Three pilot channels
 Knattekanalen, P4 Plus, P2

* HLS is a segmented media-based protocol.

* To achieve optimal redundancy, identical media segments produced independently by several
transcoders are required.

* We decided to use GStreamer for transport, encoding, packaging and metadata, but not for HLS
manifests, playlists, and peripheral services.

» GStreamer application built in Rust for stability. Peripheral services built in Perl and Python.

» The foundation of the pilot was built by Centricular and is available at:
https://github.com/centricular/aes67/-relay-chunker

sverigesadio

Media segments

Start time, end time and file name based
on RTP custom header time stamp.

SRT (encrypted)

RTP

sverigesadio

Pilot: Lessons learnt

* Initially we had a gradual drift between our redundant pathways. The media segments created were
identical, but the creation time diverged slowly.

» Large overhead in low bit rates. Large number of PES.

 LATM framing caused client playback issues for HE-AAC v2. We now ADTS use instead.
o Bug in Chrome playing HE-AAC v2 with ADTS framing.
o We only serve HE-AAC v2 to our iOS and Android apps.

» Other issues and shortcomings not directly related to media.

sverigesadio

Er———————— R [T el

Pilot: ICY

—=]
EEAOEE S e &

 |CY streaming protocol: Continuously growing file. Origins from WinAmp’s SHOUTcast.
 We wanted to offer more formats than previously, more specifically the open formats FLAC and Opus.

* We have a long history and reputation of focusing on audio quality.
 We both take pride in and enjoy fulfilling the high demands of our audiophilic audience to provide high quality
distribution formats.
* For our music channel P2, we provide an ICY FLAC stream, that has been well received.

* Initially we used the shout2send plug-in, but now we use icecastsink (can be found in a branch on Tim-
Philipp Miller’s gst-plugin-rs fork: https://qgitlab.freedesktop.org/tpm/gst-plugins-rs/-
/tree/icecastsink).

* An ICY shortcoming: libvic at 48 kHz sample rate.

sverigesadio

https://gitlab.freedesktop.org/tpm/gst-plugins-rs/-/tree/icecastsink
https://gitlab.freedesktop.org/tpm/gst-plugins-rs/-/tree/icecastsink
https://gitlab.freedesktop.org/tpm/gst-plugins-rs/-/tree/icecastsink
https://gitlab.freedesktop.org/tpm/gst-plugins-rs/-/tree/icecastsink
https://gitlab.freedesktop.org/tpm/gst-plugins-rs/-/tree/icecastsink
https://gitlab.freedesktop.org/tpm/gst-plugins-rs/-/tree/icecastsink
https://gitlab.freedesktop.org/tpm/gst-plugins-rs/-/tree/icecastsink

Disaster Recovery

» A refinement of the pilot. Still hybrid-cloud. Redundancy completely independent of our main HLS
distribution. Used if needed, for all linear channels.

» Used alongside both our old streaming platform and our current platform.

* No longer any need for an SRT proxy.

sverigesadio

Our production systems

* A lot refinements based on the pilot, but the structure is basically the same.

 Completely on-prem.

» Refined pipelines
* no dependency on PTP for media segment synchronisation
« watermarking in custom GStreamer plug-in

* Running 52 channels on HLS and 37 channels on ICY (no pop-up channels)

sverigesadio

gst-remote

Dark/Light

M Home
MixerMatrix
Flows
£ Settings
Q Files /Links

. Render time: 2ms

Hostname gst-remote
Nodename encoder
Location

Owner

New flow Import Flow

Search

knattekanalen-hls

Persist
M Stop

Debug Export #FEdit

Clone

p1-hls

Persist
W Stop

Debug Export #FEdit

Clone

p2-hls

Persist v
B S<krn

Tags

Description

Clear

Fragment
Encoder

Fragment
Encoder

Fragment
Encoder

Fragment
Encoder

Fragment
Encoder

Fragment
Encoder

Fragment
Encoder

Fragment
Encoder

O Fragment
Encoder

ost-remote

We needed an application to manage our
GStreamer pipelines.

Consists of a WebSocket API, reusable
modular GStreamer components (bins), and a
GUI. Written in Rust.

We also use GStreamer for other applications
at SR.

gst-remote gives us a unified way of
developing, managing and operating different
products at the organisation.

sverigesadio

ost-remote

Host name conference-test
Modename conference-node
11(/[E0
Location London
Owner Sveriges Radio
gst-remote Controller Standalone
Dark/Light New flow Import Flow
® Home Mame
MixerMatrix tESt_F_IO“f‘"
Description
Flows A test Flow with WebRTC
- and RTSP output.
1% Settings

ol e FlowID d3e96596912e86ba

Min Latency 21 ms

Persist +/

5 Save X Cancel
@ Delete

Clear

Description

conference, gstreamer, testing

Source |-

¥ | Filter/Process -

AES6T
SRT

JACK
RTSP
AudioTest
WASAPI
WebRTC
ASIO

A demo of gst-remote For the 2025 GStreamer Conference.

v Destination -

WebRTC

—{J Cadenza H Custom

==

Delete block
Custom Block settings

Block ID
S1e158db42294dfa

Graph
gueue name=queue_0!tee name=tee_0

sverigesadio

GStreamer plug-ins

* Our model/starting point for developing plug-ins was:
https://qgitlab.freedesktop.org/gstreamer/gst-plugins-rs/-/tree/main/audio/csound

* QOur first plug-in was audio watermarking
» All our linear audio is watermarked regardless of distribution.
» Channel specific code & time stamp
* For audience measurements
* Perceptually transparent
» Should be late in the signal chain, but might cause extra peaks in the waveform

sverigesadio

GStreamer plug-ins

» Currently working on a plug-in for broadcast audio processing.

 What is broadcast audio processing?
» Audio processing, after the radio production, but before the audio reaches listeners.
» Similar to mastering.
 EQ, AGC, compression, limiting, stereo widening, multi-/single band, etc

 Why do broadcast audio processing?
* To adapt the audio for a technical platform.
 Loudness, peak levels, SNR, audio bandwidth, etc
* Regulatory requirements & best listener experience within the technical platform.
* To adapt the audio for the typical listener & listening environment.

* To achieve a certain “sound”: Listeners will recognise the radio channel, and for aesthetics.

» To adjust any mistakes from earlier in the signal chain: levels, frequency balance, etc

sverigesadio

GStreamer plug-ins

» Audio quality has always been a top priority at SR: Listening tests, broadcast processing, etc

» 25 years ago, our colleague Torbjorn Wallentinus developed the ideas of an advanced one-band
broadcast processor in collaboration with the company Factum (now Factum Radioscape)
- The Cadenza was born!

* The hardware units has been working great for many years.

» SR recently bought a software version of the Cadenza, including the source code.

* Working towards a pilot for FM in the near future.

O ——

Wrapping up...

« Working towards getting gst-remote and our plug-ins open source to the public.

» Streaming platform foundation:
https://github.com/centricular/aes67-relay-chunker

e Questions?

sverigesadio

https://github.com/centricular/aes67-relay-chunker
https://github.com/centricular/aes67-relay-chunker
https://github.com/centricular/aes67-relay-chunker
https://github.com/centricular/aes67-relay-chunker
https://github.com/centricular/aes67-relay-chunker

	Bild 1: GStreamer for audio distribution at Sveriges Radio
	Bild 2: About Sveriges Radio (SR)
	Bild 3: Our IP offerings
	Bild 4: In the beginning…
	Bild 5: Pilot: HLS
	Bild 6
	Bild 7: Pilot: Lessons learnt
	Bild 8: Pilot: ICY
	Bild 9: Disaster Recovery
	Bild 10: Our production systems
	Bild 11: gst-remote
	Bild 12: gst-remote
	Bild 13: GStreamer plug-ins
	Bild 14: GStreamer plug-ins
	Bild 15: GStreamer plug-ins
	Bild 16: Wrapping up…

