What's New in
GStreamer D3D12

Seungha Yang

What's New in GStreamer D3D12

» Updates to Direct3D12 backend

* New Rust binding support

* New D3D12 elements

 Improved upload/download performance

Rust Binding Support

* New Rust binding for the GStreamer D3D12 backend
« Bulit on Microsoft's official windows crate

« D3D12's ref-counted object model aligns safely with Rust's
strict lifetime rules

* Provides a safe and idiomatic Rust interface to D3D12

New and Enhanced
D3D12 Elements

Introduces new and enhanced D3D12 elements

d3d12overlaycompositor

* Blends GstVideoOverlayCompositionMeta on GPU
 Avoids copying GPU frames to system memory for blending

d3d12interlace / d3d12deinterlace

» Converts between progressive and interlaced formats
« GPU-based counterparts to software interlace / deinterlace

« d3d12deinterlace: Compute-shader implementation

 Independent of vendor-implemented ID3D12VideoProcessor
« NOTE: d3d11deinterlace element is based on ID3D11VideoProcessor

« Consistent quality and capabilities across hardware

d3d12remap / d3d12fisheyedewarp

« d3d12remap: Arbitrary UV mapping with user-supplied LUT
« Similar to OpenCV's remapl)

« d3d12fisheyedewarp: Fisheye correction projection mapping
« Specialized version of d3d12remap
* Generates LUT internally from user-defined parameters

« LUT-based design ensures consistent and real-time
mapping

Existing Element Updates

« d3d12swapchainsink: Added UV-remap action signal

» Enables interactive LUT updates and dynamic view transformation
even while paused

 e.g., pass a fisheye dewarp LUT via signal for real-time projection
changes

« Added GstColorBlance interface support

« Supported by d3d12videosink / d3d12swapchainsink /
d3d12convert

. geol-time control of hue, brightness, contrast and saturation on
PU

Existing Element Updates

« Added HDR screen capture support in
d3d12screencapturesrc

* Windows HDR mode uses FP16 scRGB color space internally

« DXGI Desktop Duplication API gives incorrect colors in 8-bits RGBA
format mode

* Output FP16 scRGB as-is lossless but tricky
* 16bits floating point format is not defined in GStreamer
* Neither scRGB - scRGB white point is display-referred

* New tone-mapping path converts scRGB - sRGB for proper
SDR output

Performance
Improvements

Upload and download redesign

Why Upload / Download Matters

* Simple GPU pipeline can stay fully on GPU

« Upload / download not always critical

« Real applications often mix software elements
* Frequent data transfer between system and GPU memory

 Large-scale buffering cannot always fit in GPU memory
« Upload / download becomes unavoidable

* These are often the slowest path in GPU pipelines
« Optimizing them is essential for stable performance

Previous Limitations

 Old design inherited from GstD3D11

* Three key problems in upload / download path

« Extra copy: every frame went through system ¢« staging & GPU
« Adding unnecessary memory traffic and latency

* No batched copy: each texture handled its transfer separately
* e.g., 3 staging 2 GPU copy commands per frame in case of 1420 format
« Creating many small copy commands instead of one efficient batch

* No async copy

» Upload ran on the 3D queue - serialized with 3D rendering
« Download blocked the CPU thread waiting for GPU fence

The New Design

* Introduced GstD3D12StagingMemory

« Removed system ¢ staging copy
« Supports batched and async transfers

 Transfers handled inside d3d12upload / d3d12download

« queue-type property lets users pick copy or compute queue
 Allows task overlap instead of blocking 3D queue

* Although some elements (e.g., d3d12videosink) can upload
internally, using an explicit d3d12upload is recommended

Summary

* Rust binding built on Microsoft's official Windows crate

* New D3D12 elements: overlay, (de)interlace and fisheye
remapping

« Extended existing elements with new capabilities
« Redesigned upload / download

 Removed extra copy
« Adds batched and async transfer
« Enables queue control for better parallelism

Questions?

	슬라이드 1: What’s New in GStreamer D3D12
	슬라이드 2: What’s New in GStreamer D3D12
	슬라이드 3: Rust Binding Support
	슬라이드 4: New and Enhanced D3D12 Elements
	슬라이드 5: d3d12overlaycompositor
	슬라이드 6: d3d12interlace / d3d12deinterlace
	슬라이드 7: d3d12remap / d3d12fisheyedewarp
	슬라이드 8: Existing Element Updates
	슬라이드 9: Existing Element Updates
	슬라이드 10: Performance Improvements
	슬라이드 11: Why Upload / Download Matters
	슬라이드 12: Previous Limitations
	슬라이드 13: The New Design
	슬라이드 14: Summary
	슬라이드 15: Questions?

