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$ whoami

● Linux Systems Engineer with focus on multimedia
– More specifically: Audio & Bluetooth

● Principal Software Engineer @ Collabora

● GStreamer, PipeWire & recently BlueZ

● Author & maintainer of WirePlumber
– PipeWire’s default session manager
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Outline

● Multimedia pipeline scheduling

● Scheduling in GStreamer

● Scheduling in PipeWire

● Combining approaches
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Multimedia Pipeline Scheduling
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Pipeline scheduling - what is it?
● Managing when and how processing stages execute in a 

multimedia pipeline

● When: coordination and time sync with other stages

● How: what is going to call into the code to be executed? In 

parallel or in series?

● Goal: ensure smooth, synchronized data flow
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Pipeline scheduling - approaches
● When:

– ASAP vs wait for event / timer

– Wait to start vs wait to finish

● How: 
– chain-calling vs external loop

– Wait internally vs externally

– Single vs multi threaded
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Scheduling in GStreamer
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Scheduling in GStreamer
● Chain calling

– Each element responsible for calling the next element
– Push (source to sink) vs pull (sink to source) mode

● Multi-threaded
– Each element responsible for its own thread(s)

● Wait internally
– Each element responsible for waiting on the clock or device events
– Multiple synchronization points possible
– All start/finish waiting combinations possible
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Scheduling in GStreamer
Push mode Pull mode
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A more complex pipeline...
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Scheduling in PipeWire
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Scheduling in PipeWire
● Loop calling

– Each element (“node”) responsible only for processing

● Single thread
– Scheduling loop in a single thread

– But processing may spin off to other threads or processes **

● Wait externally
– One node designated as “driver” - signals the start of processing

– Clock and processing are separate - no waiting inside the processing code
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GStreamer PipeWire

Calling into processing code Chain External loop

Push/Pull Only one way possible

Scheduling parallelism Multi-threaded Single-threaded

Scheduling & processing together Processing may use other threads

Waiting for events Internal External

In line with processing Clocking and processing are separate

Multiple synchronization points Single synchronization point

Scheduling: PipeWire vs GStreamer
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PipeWire graph
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How does the loop know the order of execution?
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1/4 - Collect
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2/4 – Trigger audiotestsrc
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3/4 – Trigger ALSA sink
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4/4 – Finish
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Signaling
● Triggering a node uses an eventfd

– process() function is a callback to that eventfd

● “Ready” event also uses an eventfd
– Driving “loop” is a stateful callback; ready event used again to return execution

● Driver wakeup uses a timerfd (or some device fd)

● Driving thread poll()s for all of them
– Callback execution multiplexed within the same thread
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Multi-process !
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Data sharing for multi-process
● Nearly all node structures live on memfd shared memory

– Even in single process scenarios

● Atomic writes and protocol to ensure integrity
– No locks in the driving thread ! – It must never block.

● Data passing works through fixed-size arrays of buffers
– Separate structure to communicate which buffer was written in this cycle
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Cycle duration
● Nodes must complete processing before next wakeup event

– Predictable and (almost) constant cycle duration
– Note: driving thread has real-time priority

● What if a node takes too long to process?
– If on separate process, it can be ignored – output data filled with zeros

● Missing data from some path, but the rest of the graph can still run
– If on the same process, it blocks the driving thread (too bad !!!)

● Driver underruns, nothing can finish
● If it takes way too long, kernel will SIGKILL the thread (because it’s RT)
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Combining approaches
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Lessons learned
● GStreamer approach is very flexible

– Both live and non-live pipelines

– But no real-time guarantees!

– Elements may block execution as needed: allocations, locks, blocking I/O, etc...

– Element processing time is not considered as latency

– Data rate throttles as needed to get things done
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Lessons learned
● PipeWire approach can guarantee real-time

– Very fast execution, can do <1ms cycles

– But is not as flexible…

– Meant for live pipelines only
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Combining approaches
● PipeWire + GStreamer with pipewiresrc/pipewiresink

– You need to understand what you are doing

– GStreamer pipeline must be able to respect timing and buffer management 

constraints

● GStreamer threadshare elements
– PipeWire’s scheduling approach within GStreamer

– Meant for elements that do a lot of I/O

– Still not real-time, due to GStreamer’s design
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Thank you!
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