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$ whoami

* Linux Systems Engineer with focus on multimedia

More specifically: Audio & Bluetooth

* Principal Software Engineer @ Collabora
* GStreamer, PipeWire & recently BlueZ

e Author & maintainer of WirePlumber

PipeWire’s default session manager
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Pipeline scheduling - what is it?

* Managing when and how processing stages execute in a
multimedia pipeline

* When: coordination and time sync with other stages

* How: what is going to call into the code to be executed? In
parallel orin series?

* Goal: ensure smooth, synchronized data flow
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Pipeline scheduling - approaches

* When:

- ASAP vs wait for event / timer

- Wait to start vs wait to finish

° How:
- chain-calling vs external loop
- Wait internally vs externally

- Single vs multi threaded
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Scheduling in GStreamer

* Chain calling

- Each element responsible for calling the next element

- Push (source to sink) vs pull (sink to source) mode

* Multi-threaded

- Each element responsible for its own thread(s)

* Wait internally
- Each element responsible for waiting on the clock or device events
- Multiple synchronization points possible

- All start/finish waiting combinations possible
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Scheduling in GStreamer

Push mode Pull mode
driving thread
clock wait
driving thread clock wait produce data pull
while(running) {} write() to ALSA return write() to ALSA
. . . chain{) . pul_range() ., .
s : o : *;1 . s : T N A *
audiotestsrc ]—){ ALSA sink audiotestsrc H ALSA sink
% e ., % " b
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driving thread 1

loop {
pull file content
parse [ demultiplex
push audio/video

read file
return data
] pull_range()
/.. ,,.‘1 =
filesrc

A more complex pipeline...
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driving thread 2

loop {
push gueued data

}

decode data

clock wait
write to output
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video sink

queue 4){
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queue 4>{ audio decoder *>{ audio sink
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o {-:r;a.in(} E:T;a.il'll:]l
driving thread 3 mloc;;- wait

loop {
push gueued data

}

decode data

write to output
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Scheduling in PipeWire

* Loop calling

- Each element (“node”) responsible only for processing

* Single thread

- Scheduling loop in a single thread

- But processing may spin off to other threads or processes **

* Wait externally

- One node designated as “driver” - signals the start of processing

- Clock and processing are separate - no waiting inside the processing code

’O COLLABORA Open FirSt

12



Scheduling: PipeWire vs GStreamer

GStreamer PipeWire

Calling into processing code Chain External loop
Push/Pull Only one way possible
Scheduling parallelism Multi-threaded Single-threaded
Scheduling & processing together Processing may use other threads
Waiting for events Internal External
In line with processing Clocking and processing are separate
Multiple synchronization points Single synchronization point
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¥ Pipewire graph
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driving thread
loop {

wait for event
collect graph
call process() in
order

}

ready
™., event
daemon "context” "y

process() :' prcr«:esa(}"_
o i Y 2.1
Y Y :
audiotestsrc ALSA sink
Yy
timerfd
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How does the loop know the order of execution?

target
target_ N
-
A 4
. . ) target :
audiotestsrc . ALSA sink B am— Driver
statu'_s: OK . statu_s: OK 5 statu_s: OK
pending: 0 . pending: 0 target pending: 0
required: 1 . required: 2 required: 2
7 ™y
audiotestsrc ‘ . ALSA sink
L’ A &
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1/4 - Collect

_"“‘i.
audiotestsrc ALSA sink

status: NOT_TRIGGERED status: NOT_TRIGGERED E status: NOT_TRIGGERED
pending: 1 pending: 2 pending: 2
required: 1 required: 2 required: 2

P 1 h
audiotestsrc ‘ ALSA sink
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2/4 - Trigger audiotestsrc

audiotestsrc ALSA sink o Driver
status: TRIGGERED status: NOT_TRIGGERED E status: NOT_TRIGGERED
pending: 0 pending: 1 pending: 2
required: 1 required: 2 required: 2
o5

audiotestsrc ALSA sink
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3/4 - Trigger ALSA sink

audiotestsrc
status: FINISHED

pending: 0

required: 1

ALSA sink
status: TRIGGERED

pending: 0
required: 2

audiotestsrc
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stalus: NOT_TRIGGERED

pending: 1
required: 2
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4/4 - Finish

¥
audiotestsrc ALSA sink
status: FINISHED status: FINISHED status: FINISHED
pending: 0 pending: 0 pending: 0
required: 1 required: 2 required: 2
o 1 Fs

audiotestsrc ‘ ALSA sink
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Signaling

* Triggering a node uses an eventfd

- process() function is a callback to that eventfd

* “Ready” event also uses an eventfd

- Driving “loop” is a stateful callback; ready event used again to return execution

* Driver wakeup uses a timerfd (or some device fd)

° Driving thread poll()s for all of them

- Callback execution multiplexed within the same thread
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[
1
1
driving thread I driving thread
loop { : loop {
poll() ' poll()
-> callback I -> callback
} I }
1
: I :
- I -
: 1 : "ready”
[ — : d ncontext” " . ,eventfd
’ MUIti'proceSS! client "conte EURPEE SR aemon "co R *
. |
. I A ",
"trigger” eventfd 1 . "trigger” eventd .
-= process() 1 . -> process()
1.-'Ir finished - v :
’ V. ey il e 5
audiotestsrc 1 » ALSA sink
' O
: \ J
i
1
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Data sharing for multi-process

* Nearly all node structures live on memfd shared memory

- Evenin single process scenarios

* Atomic writes and protocol to ensure integrity

- Nolocks in the driving thread ! - It must never block.

* Data passing works through fixed-size arrays of buffers

- Separate structure to communicate which buffer was written in this cycle
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Cycle duration

* Nodes must complete processing before next wakeup event

- Predictable and (almost) constant cycle duration

- Note: driving thread has real-time priority

* What if a node takes too long to process?
- If on separate process, it can be ignored - output data filled with zeros
* Missing data from some path, but the rest of the graph can still run

- If on the same process, it blocks the driving thread (too bad !!!)

* Driver underruns, nothing can finish

* Ifittakes way too long, kernel will SIGKILL the thread (because it’s RT)
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Lessons learned

* GStreamer approach is very flexible

- Both live and non-live pipelines

- But no real-time guarantees!

- Elements may block execution as needed: allocations, locks, blocking I/0, etc...
- Element processing time is not considered as latency

- Data rate throttles as needed to get things done
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Lessons learned

* PipeWire approach can guarantee real-time
- Very fast execution, can do <Ims cycles
- Butis not as flexible...

- Meant for live pipelines only
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Combining approaches

* PipeWire + GStreamer with pipewiresrc/pipewiresink

- You need to understand what you are doing

- GStreamer pipeline must be able to respect timing and buffer management

constraints

e GStreamer threadshare elements
- PipeWire’s scheduling approach within GStreamer
- Meant for elements that do a lot of 1/0

- Still not real-time, due to GStreamer’s design
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Thank you!
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