
1

PipeWire’s pipeline operation vs
GStreamer’s explained

George Kiagiadakis
Principal Software Engineer

GStreamer Conference - October 2025

2

$ whoami

● Linux Systems Engineer with focus on multimedia
– More specifically: Audio & Bluetooth

● Principal Software Engineer @ Collabora

● GStreamer, PipeWire & recently BlueZ

● Author & maintainer of WirePlumber
– PipeWire’s default session manager

3

Outline

● Multimedia pipeline scheduling

● Scheduling in GStreamer

● Scheduling in PipeWire

● Combining approaches

4

Multimedia Pipeline Scheduling

5

Pipeline scheduling - what is it?
● Managing when and how processing stages execute in a

multimedia pipeline

● When: coordination and time sync with other stages

● How: what is going to call into the code to be executed? In

parallel or in series?

● Goal: ensure smooth, synchronized data flow

6

Pipeline scheduling - approaches
● When:

– ASAP vs wait for event / timer

– Wait to start vs wait to finish

● How:
– chain-calling vs external loop

– Wait internally vs externally

– Single vs multi threaded

7

Scheduling in GStreamer

8

Scheduling in GStreamer
● Chain calling

– Each element responsible for calling the next element
– Push (source to sink) vs pull (sink to source) mode

● Multi-threaded
– Each element responsible for its own thread(s)

● Wait internally
– Each element responsible for waiting on the clock or device events
– Multiple synchronization points possible
– All start/finish waiting combinations possible

9

Scheduling in GStreamer
Push mode Pull mode

10

A more complex pipeline...

11

Scheduling in PipeWire

12

Scheduling in PipeWire
● Loop calling

– Each element (“node”) responsible only for processing

● Single thread
– Scheduling loop in a single thread

– But processing may spin off to other threads or processes **

● Wait externally
– One node designated as “driver” - signals the start of processing

– Clock and processing are separate - no waiting inside the processing code

13

GStreamer PipeWire

Calling into processing code Chain External loop

Push/Pull Only one way possible

Scheduling parallelism Multi-threaded Single-threaded

Scheduling & processing together Processing may use other threads

Waiting for events Internal External

In line with processing Clocking and processing are separate

Multiple synchronization points Single synchronization point

Scheduling: PipeWire vs GStreamer

14

PipeWire graph

15

How does the loop know the order of execution?

16

1/4 - Collect

17

2/4 – Trigger audiotestsrc

18

3/4 – Trigger ALSA sink

19

4/4 – Finish

20

Signaling
● Triggering a node uses an eventfd

– process() function is a callback to that eventfd

● “Ready” event also uses an eventfd
– Driving “loop” is a stateful callback; ready event used again to return execution

● Driver wakeup uses a timerfd (or some device fd)

● Driving thread poll()s for all of them
– Callback execution multiplexed within the same thread

21

Multi-process !

22

Data sharing for multi-process
● Nearly all node structures live on memfd shared memory

– Even in single process scenarios

● Atomic writes and protocol to ensure integrity
– No locks in the driving thread ! – It must never block.

● Data passing works through fixed-size arrays of buffers
– Separate structure to communicate which buffer was written in this cycle

23

Cycle duration
● Nodes must complete processing before next wakeup event

– Predictable and (almost) constant cycle duration
– Note: driving thread has real-time priority

● What if a node takes too long to process?
– If on separate process, it can be ignored – output data filled with zeros

● Missing data from some path, but the rest of the graph can still run
– If on the same process, it blocks the driving thread (too bad !!!)

● Driver underruns, nothing can finish
● If it takes way too long, kernel will SIGKILL the thread (because it’s RT)

24

Combining approaches

25

Lessons learned
● GStreamer approach is very flexible

– Both live and non-live pipelines

– But no real-time guarantees!

– Elements may block execution as needed: allocations, locks, blocking I/O, etc...

– Element processing time is not considered as latency

– Data rate throttles as needed to get things done

26

Lessons learned
● PipeWire approach can guarantee real-time

– Very fast execution, can do <1ms cycles

– But is not as flexible…

– Meant for live pipelines only

27

Combining approaches
● PipeWire + GStreamer with pipewiresrc/pipewiresink

– You need to understand what you are doing

– GStreamer pipeline must be able to respect timing and buffer management

constraints

● GStreamer threadshare elements
– PipeWire’s scheduling approach within GStreamer

– Meant for elements that do a lot of I/O

– Still not real-time, due to GStreamer’s design

28

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

