PipeWire’s pipeline operation vs
GStreamer’s explained

George Kiagiadakis
Principal Software Engineer

GStreamer Conference - October 2025

’O COLLABORA Open FirSt

1

$ whoami

* Linux Systems Engineer with focus on multimedia

More specifically: Audio & Bluetooth

* Principal Software Engineer @ Collabora
* GStreamer, PipeWire & recently BlueZ

e Author & maintainer of WirePlumber

PipeWire’s default session manager

’O COLLABORA Open FirSt

2

COLLABORA
»O

Outline

Multimedia pipeline scheduling

Scheduling in GStreamer

Scheduling in PipeWire

Combining approaches

COLLABORA
»O

Multimedia Pipeline Scheduling

Pipeline scheduling - what is it?

* Managing when and how processing stages execute in a
multimedia pipeline

* When: coordination and time sync with other stages

* How: what is going to call into the code to be executed? In
parallel orin series?

* Goal: ensure smooth, synchronized data flow

’O COLLABORA Open First

5

Pipeline scheduling - approaches

* When:

- ASAP vs wait for event / timer

- Wait to start vs wait to finish

° How:
- chain-calling vs external loop
- Wait internally vs externally

- Single vs multi threaded

’O COLLABORA Open FirSt

COLLABORA
»O

Scheduling in GStreamer

Scheduling in GStreamer

* Chain calling

- Each element responsible for calling the next element

- Push (source to sink) vs pull (sink to source) mode

* Multi-threaded

- Each element responsible for its own thread(s)

* Wait internally
- Each element responsible for waiting on the clock or device events
- Multiple synchronization points possible

- All start/finish waiting combinations possible

’O COLLABORA Open First

Scheduling in GStreamer

Push mode Pull mode
driving thread
clock wait
driving thread clock wait produce data pull
while(running) {} write() to ALSA return write() to ALSA
. . . chain{) . pul_range() ., .
s : o : *;1 . s : T N A *
audiotestsrc]—){ ALSA sink audiotestsrc H ALSA sink
% e ., % " b

’O COLLABORA Open FirSt

driving thread 1

loop {
pull file content
parse [demultiplex
push audio/video

read file
return data
] pull_range()
/.. ,,.‘1 =
filesrc

A more complex pipeline...

COLLABORA
*O

driving thread 2

loop {
push gueued data

}

decode data

clock wait
write to output

3

-,

. .{:hain{}

s

A
video sink

queue 4){
. b
Fa B I
queue 4>{ audio decoder *>{ audio sink
") \ ‘_1' W, — E 4
o {-:r;a.in(} E:T;a.il'll:]l
driving thread 3 mloc;;- wait

loop {
push gueued data

}

decode data

write to output

Open First

10

COLLABORA
»O

Scheduling in PipeWire

Scheduling in PipeWire

* Loop calling

- Each element (“node”) responsible only for processing

* Single thread

- Scheduling loop in a single thread

- But processing may spin off to other threads or processes **

* Wait externally

- One node designated as “driver” - signals the start of processing

- Clock and processing are separate - no waiting inside the processing code

’O COLLABORA Open FirSt

12

Scheduling: PipeWire vs GStreamer

GStreamer PipeWire

Calling into processing code Chain External loop
Push/Pull Only one way possible
Scheduling parallelism Multi-threaded Single-threaded
Scheduling & processing together Processing may use other threads
Waiting for events Internal External
In line with processing Clocking and processing are separate
Multiple synchronization points Single synchronization point

’O COLLABORA Open First

13

¥ Pipewire graph

COLLABORA
*O

driving thread
loop {

wait for event
collect graph
call process() in
order

}

ready
™., event
daemon "context” "y

process() :' prcr«:esa(}"_
o i Y 2.1
Y Y :
audiotestsrc ALSA sink
Yy
timerfd

Open First

How does the loop know the order of execution?

target
target_ N
-
A 4
. .) target :
audiotestsrc . ALSA sink B am— Driver
statu'_s: OK . statu_s: OK 5 statu_s: OK
pending: 0 . pending: 0 target pending: 0
required: 1 . required: 2 required: 2
7 ™y
audiotestsrc ‘ . ALSA sink
L’ A &

’O COLLABORA Open First

15

1/4 - Collect

_"“‘i.
audiotestsrc ALSA sink

status: NOT_TRIGGERED status: NOT_TRIGGERED E status: NOT_TRIGGERED
pending: 1 pending: 2 pending: 2
required: 1 required: 2 required: 2

P 1 h
audiotestsrc ‘ ALSA sink

’O COLLABORA Open FirSt

16

2/4 - Trigger audiotestsrc

audiotestsrc ALSA sink o Driver
status: TRIGGERED status: NOT_TRIGGERED E status: NOT_TRIGGERED
pending: 0 pending: 1 pending: 2
required: 1 required: 2 required: 2
o5

audiotestsrc ALSA sink

’O COLLABORA Open First

3/4 - Trigger ALSA sink

audiotestsrc
status: FINISHED

pending: 0

required: 1

ALSA sink
status: TRIGGERED

pending: 0
required: 2

audiotestsrc

COLLABORA
*O

stalus: NOT_TRIGGERED

pending: 1
required: 2

Open First

18

4/4 - Finish

¥
audiotestsrc ALSA sink
status: FINISHED status: FINISHED status: FINISHED
pending: 0 pending: 0 pending: 0
required: 1 required: 2 required: 2
o 1 Fs

audiotestsrc ‘ ALSA sink

’O COLLABORA Open FirSt

19

Signaling

* Triggering a node uses an eventfd

- process() function is a callback to that eventfd

* “Ready” event also uses an eventfd

- Driving “loop” is a stateful callback; ready event used again to return execution

* Driver wakeup uses a timerfd (or some device fd)

° Driving thread poll()s for all of them

- Callback execution multiplexed within the same thread

’O COLLABORA Open FirSt

20

[
1
1
driving thread I driving thread
loop { : loop {
poll() ' poll()
-> callback I -> callback
} I }
1
: I :
- I -
: 1 : "ready”
[— : d ncontext” " . ,eventfd
’ MUIti'proceSS! client "conte EURPEE SR aemon "co R *
. |
. I A ",
"trigger” eventfd 1 . "trigger” eventd .
-= process() 1 . -> process()
1.-'Ir finished - v :
’ V. ey il e 5
audiotestsrc 1 » ALSA sink
' O
: \ J
i
1

’O COLLABORA Open FirSt

Data sharing for multi-process

* Nearly all node structures live on memfd shared memory

- Evenin single process scenarios

* Atomic writes and protocol to ensure integrity

- Nolocks in the driving thread ! - It must never block.

* Data passing works through fixed-size arrays of buffers

- Separate structure to communicate which buffer was written in this cycle

’O COLLABORA Open First

22

Cycle duration

* Nodes must complete processing before next wakeup event

- Predictable and (almost) constant cycle duration

- Note: driving thread has real-time priority

* What if a node takes too long to process?
- If on separate process, it can be ignored - output data filled with zeros
* Missing data from some path, but the rest of the graph can still run

- If on the same process, it blocks the driving thread (too bad !!!)

* Driver underruns, nothing can finish

* Ifittakes way too long, kernel will SIGKILL the thread (because it’s RT)

’O COLLABORA Open FirSt

23

COLLABORA
»O

Combining approaches

24

Lessons learned

* GStreamer approach is very flexible

- Both live and non-live pipelines

- But no real-time guarantees!

- Elements may block execution as needed: allocations, locks, blocking I/0, etc...
- Element processing time is not considered as latency

- Data rate throttles as needed to get things done

’O COLLABORA Open FirSt

25

Lessons learned

* PipeWire approach can guarantee real-time
- Very fast execution, can do <Ims cycles
- Butis not as flexible...

- Meant for live pipelines only

’O COLLABORA Open FirSt

26

Combining approaches

* PipeWire + GStreamer with pipewiresrc/pipewiresink

- You need to understand what you are doing

- GStreamer pipeline must be able to respect timing and buffer management

constraints

e GStreamer threadshare elements
- PipeWire’s scheduling approach within GStreamer
- Meant for elements that do a lot of 1/0

- Still not real-time, due to GStreamer’s design

’O COLLABORA Open FirSt

27

O

Thank you!

’O COLLABORA Open FirSt

28

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

