
www.axis.com

Improving WebRTC 
data channel 
performance
Emil Ljungdahl, Axis Communications

24 October 2025

www.axis.com



www.axis.com

Axis Communications



www.axis.com

WebRTC at Axis

Live (video/audio channel)

PTZ (data channel)
Recordings (data channel)



www.axis.com

WebRTC at Axis

Live (video/audio channel)

PTZ (data channel)
Recordings (data channel)



www.axis.com

WebRTC at Axis

Live (video/audio channel)



www.axis.com

WebRTC at Axis

LTE

virtual network



www.axis.com

WebRTC at Axis

Tunnels (data channel)



www.axis.com

> For all non-media data

> Ordered vs unordered messages

> Reliable vs Unreliable messages

> Text & Binary message types

> SCTP
DTLS
ICE/UDP

> 1 WebRTC data channel = 1 SCTP stream

> Congestion control & loss detection similiar to TCP

– Selective ACK (SACK)

– Mostly sender side logic

WebRTC data channels



www.axis.com

> usrSCTP

> Wrapper code around usrSCTP

SCTP in GStreamer



www.axis.com

> Different environments brings different challenges

– P2P vs TURN

– Latency

– Jitter

– Packet re-ordering

> What to test?

– Environments similar to what we think the users are in!

> In Axis case: most data sent FROM GStreamer code

Testing data channel throughput



www.axis.com

> Focus on Axis use case

> Simplified

> Absolute numbers not so important!

Testing data channel throughput



www.axis.com

> Local network

– Low latency

– No packet re-ordering

> Long distance link

– High latency

– No (or almost no) packet re-ordering

> Mobile network

– High latency

– Packet re-ordering (typically caused by low layer re-transmits)

Testing data channel throughput



www.axis.com

Test setup: environment

Windows Server

Axis WebRTC application

Linux machine

2x Ethernet

Traffic Control (tc qdisc)

Browser



www.axis.com

Test setup: data channel protocol

text:
{ …, method: “startSpeedtest”, 

msgSize: 16384, msgCount: 1000 }

binary (size: 16384)

binary (size: 16384)

binary (size: 16384)

.

.

.

elapsed time (t)

Bitrate (bps) = msgSize * msgCount * 8 / t 



www.axis.com

> Local network

– Traffic control in bypass mode

> Result: ~100 Mbit/s

> TCP comparison: ~300 Mbit/s

Improvement #1: Before



www.axis.com

Improvement #1: Before



www.axis.com

> In gstsctpenc.c, gst_sctp_enc_sink_chain():

…

#define BUFFER_FULL_SLEEP_TIME 100000

…

gint64 end_time = g_get_monotonic_time () + BUFFER_FULL_SLEEP_TIME;

…

/* The buffer was probably full. Retry in a while */

g_cond_wait_until (&sctpenc_pad->cond, &sctpenc_pad->lock, end_time);

…

> Change BUFFER_FULL_SLEEP_TIME to 1000

Improvement #1: The fix



www.axis.com

Improvement #1: After



www.axis.com

> Long distance link (RTT ~80ms)

– tc qdisc add dev eth0 root netem delay 40ms

– tc qdisc add dev eth1 root netem delay 40ms

> Result: ~8 Mbit/s in Chrome (~12 – 55 Mbit/s in Firefox)

> TCP comparison: ~90 Mbit/s

Improvement #2: Before



www.axis.com

Improvement #2: The problem

…



www.axis.com

Improvement #2: The problem

…
…



www.axis.com

Improvement #2: The problem

…
…

…



www.axis.com

Improvement #2: The problem

…

RTT

…

Potential retransmit timeout!

…
…



www.axis.com

> SACK-IMMEDIATELY (RFC-7053)

> Set SACK-IMMEDIATELY flag if: IN_FLIGHT + MTU >= CWND

> Similar fix in PION back in 2020 (https://github.com/pion/sctp/issues/62)

> Drawback: A few more SACKs

Improvement #2: The solution



www.axis.com

> Chrome: ~15 Mbit/s

> Firefox: stable at ~55 Mbit/s

Improvement #2: Result



www.axis.com

> Mobile network (RTT ~80ms, with packet reordering)

– tc qdisc add dev eth0 root netem delay 40ms 15ms 

distribution normal

– tc qdisc add dev eth1 root netem delay 40ms

> Result: ~600 kbit/s

> TCP comparison: ~1.4 Mbit/s Windows (~13 Mbit/s Linux!!!)

Improvement #3: Environment



www.axis.com

Improvement #3: The problem

…
…



www.axis.com

Improvement #3: The problem

…

…



www.axis.com

Improvement #3: The problem

…

…

Link layer re-transmit!



www.axis.com

Improvement #3: The problem

…

…

…



www.axis.com

Improvement #3: The problem

…

…

…



www.axis.com

Improvement #3: The problem

…

…

…

SACK N (GAP 2)

SACK N+20

SACK N (GAP 2-20)

…

…

Spurious 

retransmit 

after 3 

SACKs!



www.axis.com

> RACK for SCTP (Felix Weinrank, Michael Tüxen, 2020)

– Based on The RACK-TLP Loss Detection Algorithm for TCP (RFC 8985)

– Uses a ”reordering window” instead of “DupACK count”

– No retransmit until RTT + reoWnd

Improvement #3: RACK, Possible solution



www.axis.com

Improvement #3: RACK, Possible solution

…

…

…

SACK N (GAP 2)

SACK N+20

SACK N (GAP 2-20)

…

…

RTT

reoWnd



www.axis.com

> Implementation in usrSCTP in progress

> Preliminary results: looking good so far

– ~6 Mbit/s (before: ~600 kbit/s)

> Important to avoid decreased performance in other network setups

> Upstream to usrSCTP as well

Improvement #3: RACK, Possible solution



www.axis.com

> Upstream improvement #1 + #2 ASAP!

> Finalize RACK implementation

> dcSCTP

– YES! But probably no silver bullet in terms of performance

> What about TURN TCP / TURNS?

– 2 layered congestion algorithms, is that a problem?

Future



www.axis.com

 

Questions?

© 2023 Axis Communications AB. All rights reserved.



www.axis.com

 

Thank you!

© 2023 Axis Communications AB. All rights reserved.


	Slide 1: Improving WebRTC data channel performance
	Slide 2: Axis Communications
	Slide 3: WebRTC at Axis
	Slide 4: WebRTC at Axis
	Slide 5: WebRTC at Axis
	Slide 6: WebRTC at Axis
	Slide 7: WebRTC at Axis
	Slide 8: WebRTC data channels
	Slide 9: SCTP in GStreamer
	Slide 10: Testing data channel throughput
	Slide 11: Testing data channel throughput
	Slide 12: Testing data channel throughput
	Slide 13: Test setup: environment
	Slide 14: Test setup: data channel protocol
	Slide 15: Improvement #1: Before
	Slide 16: Improvement #1: Before
	Slide 17: Improvement #1: The fix
	Slide 18: Improvement #1: After
	Slide 19: Improvement #2: Before
	Slide 20: Improvement #2: The problem
	Slide 21: Improvement #2: The problem
	Slide 22: Improvement #2: The problem
	Slide 23: Improvement #2: The problem
	Slide 24: Improvement #2: The solution
	Slide 25: Improvement #2: Result
	Slide 26: Improvement #3: Environment
	Slide 27: Improvement #3: The problem
	Slide 28: Improvement #3: The problem
	Slide 29: Improvement #3: The problem
	Slide 30: Improvement #3: The problem
	Slide 31: Improvement #3: The problem
	Slide 32: Improvement #3: The problem
	Slide 33: Improvement #3: RACK, Possible solution
	Slide 34: Improvement #3: RACK, Possible solution
	Slide 35: Improvement #3: RACK, Possible solution
	Slide 36: Future
	Slide 37
	Slide 38

