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WebRTC at Axis

Live (video/audio channel)
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WebRTC at Axis

LTE

virtual network
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WebRTC at Axis

Tunnels (data channel)
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> For all non-media data

> Ordered vs unordered messages

> Reliable vs Unreliable messages

> Text & Binary message types

> SCTP
DTLS
ICE/UDP

> 1 WebRTC data channel = 1 SCTP stream

> Congestion control & loss detection similiar to TCP

– Selective ACK (SACK)

– Mostly sender side logic

WebRTC data channels
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> usrSCTP

> Wrapper code around usrSCTP

SCTP in GStreamer
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> Different environments brings different challenges

– P2P vs TURN

– Latency

– Jitter

– Packet re-ordering

> What to test?

– Environments similar to what we think the users are in!

> In Axis case: most data sent FROM GStreamer code

Testing data channel throughput
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> Focus on Axis use case

> Simplified

> Absolute numbers not so important!

Testing data channel throughput
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> Local network

– Low latency

– No packet re-ordering

> Long distance link

– High latency

– No (or almost no) packet re-ordering

> Mobile network

– High latency

– Packet re-ordering (typically caused by low layer re-transmits)

Testing data channel throughput
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Test setup: environment

Windows Server

Axis WebRTC application

Linux machine

2x Ethernet

Traffic Control (tc qdisc)

Browser
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Test setup: data channel protocol

text:
{ …, method: “startSpeedtest”, 

msgSize: 16384, msgCount: 1000 }

binary (size: 16384)

binary (size: 16384)

binary (size: 16384)

.

.

.

elapsed time (t)

Bitrate (bps) = msgSize * msgCount * 8 / t 
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> Local network

– Traffic control in bypass mode

> Result: ~100 Mbit/s

> TCP comparison: ~300 Mbit/s

Improvement #1: Before
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Improvement #1: Before
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> In gstsctpenc.c, gst_sctp_enc_sink_chain():

…

#define BUFFER_FULL_SLEEP_TIME 100000

…

gint64 end_time = g_get_monotonic_time () + BUFFER_FULL_SLEEP_TIME;

…

/* The buffer was probably full. Retry in a while */

g_cond_wait_until (&sctpenc_pad->cond, &sctpenc_pad->lock, end_time);

…

> Change BUFFER_FULL_SLEEP_TIME to 1000

Improvement #1: The fix
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Improvement #1: After
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> Long distance link (RTT ~80ms)

– tc qdisc add dev eth0 root netem delay 40ms

– tc qdisc add dev eth1 root netem delay 40ms

> Result: ~8 Mbit/s in Chrome (~12 – 55 Mbit/s in Firefox)

> TCP comparison: ~90 Mbit/s

Improvement #2: Before
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Improvement #2: The problem

…
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Improvement #2: The problem

…
…
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Improvement #2: The problem

…
…

…
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Improvement #2: The problem

…

RTT

…

Potential retransmit timeout!

…
…
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> SACK-IMMEDIATELY (RFC-7053)

> Set SACK-IMMEDIATELY flag if: IN_FLIGHT + MTU >= CWND

> Similar fix in PION back in 2020 (https://github.com/pion/sctp/issues/62)

> Drawback: A few more SACKs

Improvement #2: The solution
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> Chrome: ~15 Mbit/s

> Firefox: stable at ~55 Mbit/s

Improvement #2: Result
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> Mobile network (RTT ~80ms, with packet reordering)

– tc qdisc add dev eth0 root netem delay 40ms 15ms 

distribution normal

– tc qdisc add dev eth1 root netem delay 40ms

> Result: ~600 kbit/s

> TCP comparison: ~1.4 Mbit/s Windows (~13 Mbit/s Linux!!!)

Improvement #3: Environment
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Improvement #3: The problem

…
…
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Improvement #3: The problem

…

…
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Improvement #3: The problem

…

…

Link layer re-transmit!
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Improvement #3: The problem

…

…
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Improvement #3: The problem
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…
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Improvement #3: The problem

…

…

…

SACK N (GAP 2)

SACK N+20

SACK N (GAP 2-20)

…

…

Spurious 

retransmit 

after 3 

SACKs!
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> RACK for SCTP (Felix Weinrank, Michael Tüxen, 2020)

– Based on The RACK-TLP Loss Detection Algorithm for TCP (RFC 8985)

– Uses a ”reordering window” instead of “DupACK count”

– No retransmit until RTT + reoWnd

Improvement #3: RACK, Possible solution
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Improvement #3: RACK, Possible solution

…

…

…

SACK N (GAP 2)

SACK N+20

SACK N (GAP 2-20)

…

…

RTT

reoWnd



www.axis.com

> Implementation in usrSCTP in progress

> Preliminary results: looking good so far

– ~6 Mbit/s (before: ~600 kbit/s)

> Important to avoid decreased performance in other network setups

> Upstream to usrSCTP as well

Improvement #3: RACK, Possible solution
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> Upstream improvement #1 + #2 ASAP!

> Finalize RACK implementation

> dcSCTP

– YES! But probably no silver bullet in terms of performance

> What about TURN TCP / TURNS?

– 2 layered congestion algorithms, is that a problem?

Future
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Questions?

© 2023 Axis Communications AB. All rights reserved.
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Thank you!

© 2023 Axis Communications AB. All rights reserved.
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