
Improvements to
the Raspberry Pi
GPU driver stack

Ella Stanforth, Juan A. Suárez

XDC 2025 - Vienna

1

Who are we?
We are open-source developers at Igalia working at the
Graphics Team.
We focus on enhancing the Raspberry Pi graphics stack,
mainly on the Mesa user-space driver.
We are representing the work done not only by us, but
from other members of the Graphics Team working
improving also the Raspberry Pi driver.

2

Contents
New Features (Ella)
Performance Improvements (Juan)
Q&A

3

New extensions exposed
(since 24.2 branchpoint)

GL_EXT_conservative_depth
GL_EXT_disjoint_timer_query
GL_EXT_multi_draw_indirect
GL_EXT_sRGB
GL_EXT_shader_framebuffer_fetch
GL_EXT_shader_framebuffer_fetch_non_coherent
GL_KHR_blend_equation_advanced
GL_KHR_blend_equation_advanced_coherent
GL_{ARB,EXT}_blend_func_extended
GL_{ARB,EXT}_timer_query
GL_{ARB,KHR}_robust_buffer_access_behavior

4

Framebuffer Fetch
We implemented this by lowering load_output to a V3D
specific TLB read intrinsic.
Gallium provides GL_KHR_blend_equation_advanced for
us.

5

Dual Source Blend
The hardware does not support dual source blend factors.
We used the common nir_lower_blend pass as a
software fallback.

6

16 Bit Normalisation
16 bit normalised formats are required by OpenGL 3.2 but
not supported by the hardware.
We added a NIR lowering pass to convert to and from
integer formats.
We use the same software fallback for blending.

7

NIR printf
Very helpful debugging feature.
We added a new helper to reduce noise.

nir_printf_fmt_at_px(b, size, x, y, fmt, ...)

8

Robustness
Added so CTS can detect resets.
We added reset counters to the kernel driver to support
this.

9

OpenGL 3.2 - Pending issues
The driver is missing support for non seamless cubemaps:

The hardware only supports seamless cubemaps.
Zink has a lowering pass but some piglit tests fail.

10

Performance improvements
For last year, we focused on performance improvements on
GPU limited scenarios using Full-HD target resolution.
We have analyzed the performance of V3D using several
GLES gfxbench traces, and we have achieved an average
of ~32.29% FPS improvement in these scenarios since the
last XDC, with cases from ~4.92% to ~68.32% FPS
improvement.
All these performance optimizations are available in stable
Mesa 25.2.3

11

Avoid load/stores on
invalidated framebuffers

With the information of the invalidated framebuffers we
can avoid the stores of the results of tile buffer rendering
and the next load if they re-used in following jobs as any
read value would be undefined.
This gets us an +1.11% FPS average improvement (between
~0.05% and 3.26%).

c1: “v3d: avoid load/store of tile buffer on invalidated framebuffer”

12

Take advantage of
Early-Z optimization

Early-Z optimization was disabled when there is a discard
instruction in the draw call shader. But we can enable it at
draw time if depth updates are disabled and there are no
occlusion queries active.
This gets us an +13,21% FPS average improvement
(between 4.78% and 17.69%).

c2: “v3d: Enable Early-Z with discards when depth updates are disabled”

13

Avoid loads/stores with
disabled rasterization

If all draw calls submitted have the rasterizer discard
enabled, we can avoid any tile buffer load/stores.
This is specially helpful in scenarios where transform
feedback is used, because the application is only interested
in the geometry results.
This gets us an +13.32% FPS average improvement
(between 0% and 41.32%)

c3: “v3d: Don't load/store if rasterizer discard is enabled”

14

Avoid supertile
coordination submission

without rasterization
This is another improvement when rasterizer discard is
enabled.
Even avoiding tile buffer load/stores, GPU still executes the
FS in all tiles belonging to a supertile.
This basically emits no supertile to avoid that.
This gets us an +1.16% FPS average improvement (between
0% and 3.77%).

15

FPS over time per benchmark

16

Q&A
Join us!

https://www.igalia.com/jobs

17

https://www.igalia.com/jobs

18

