
GPU Job Scheduling in DRM:
Past, Present and Future

Philipp Stanner
Red Hat

September 2025

1



Who?

● Philipp Stanner
● Kernel Engineer at Red Hat’s “GPU & Accelerators” team
● One of three DRM GPU Scheduler maintainers
● phasta@kernel.org
● OFTC: phasta (I’ve got no bouncer. If I’m offline, I’m offline)

2

mailto:phasta@kernel.org


What’s the 
Scheduler?
Load-Balancer: GPU doesn’t have infinite 
capacity for jobs.

Dependency-Manager: runs jobs in 
(per-entity) submission order, but waits until a 
job’s (external) dependencies are fulfilled 
(e.g., a VM_EXEC job only runs after an 
associated VM_BIND is finished).

“Scheduler” because it schedules between 
entities (job containers), each of which can 
correspond to a userspace counterpart.
Can’t interrupt jobs like a CPU scheduler can.

Timeout handler: Guarantees forward 
progress in case a job takes too long / 
forever.

3

jobjobjobjob

jobjobjobjob

jobjobjobjob

job

GPU

job

ring 0

ring 1
jobjobjob

dma_fence

wait()

timeout

Pick next entity
(scheduling)

N entities
GPU Scheduler

Ring 0

Ring 1

Typically one 
scheduler per ring

   …



Timeouts

4

jobjobjobjob

jobjobjobjob

jobjobjobjob

timeout

N entities

Broken while(true) job 
blocks ring forever

Scheduler must guarantee forward progress.

Scheduler can’t just cancel the broken job on 
the GPU.

GPU needs to be reset, killing all “innocent” 
jobs in the rings.

Then, entity the job stemmed from has to be 
killed, with the associated userspace handle.

Resubmitting innocent jobs is difficult. 
Scheduler currently has no infrastructure for 
that (deprecated).

Timeouts can be false-positives: GPU didn’t 
hang, was just slow.

GPU Scheduler

GPU

ring 0

ring 1
jobjobjob

Ring 0

Ring 1

jobjob

   …



Many (solvable?) problems

● In general, scheduler issues are / were:
○ Race conditions
○ Broken (and even missing) locking
○ dma_fence signalling issues
○ Refcounting issues
○ Legacy code (e.g., old scheduling policies. Currently cleaned up by Tvrtko Ursulin (Igalia))

○ Missing documentation
○ No concept for job-resubmissions
○ Unclear / unenforced lifetimes of scheduler objects

● In case you’re searching for work: Code base contains many FIXMEs :)

5

“My God, it’s full of race conditions!”
  – 2024: A Kernel Odyssey



Problems 1:
Abusing API-Internals

6

out_no_timeout:
list_add(&sched_job->list, &sched_job->sched->pending_list);
return DRM_GPU_SCHED_STAT_NOMINAL;

}

Scheduler informs driver via 
timedout_job() callback that a certain 
job caused a timeout.

Some drivers have mechanisms to 
detect that this was a false-positive 
timeout.

To the right:

Code from a driver’s callback. Driver 
decides to just add the job back into 
the scheduler’s internal data 
structure.

Without taking the list-lock!

pending_list

GPU Scheduler

timedout_job()
job

job

Unfortunately, there are many drivers that 
access various scheduler internals.



API Internals - 
Solution

Solved by Maíra Canal (Igalia) 
(61ee19dedb8d)

Timeout callback now informs 
Scheduler via return code about 
false-positives.

Problem was solvable in central 
infrastructure without too much effort.

⇒ Desirable behavior in DRM :)

7

pending_list

GPU Scheduler

timedout_job()
job

WAS_NO_TIMEOUT



Problems 2: Lack of Documentation

Scheduler code line calls into the 
driver callback.

Driver is expected to return a 
dma_fence with its reference count 
set to >= 2: One for itself, one for 
Scheduler.

Scheduler cannot do that itself (racy).

This was not documented.

8

fence = sched->ops->run_job(sched_job);
complete_all(&entity->entity_idle);
drm_sched_fence_scheduled(s_fence, fence);

if (!IS_ERR_OR_NULL(fence)) {
/* Drop for original kref_init of the fence */
dma_fence_put(fence);

r = dma_fence_add_callback(fence, &sched_job->cb,
               drm_sched_job_done_cb);



Problems 3: Code Quality

“Implicit refcounting” is used in the 
Scheduler.

“I know that there is a reference still 
around somewhere, so this is fine.”

The code on the right is not a “bug”, 
i.e., it cannot fault. But it’s still not 
good :(

9

fence = sched->ops->run_job(sched_job);
complete_all(&entity->entity_idle);
drm_sched_fence_scheduled(s_fence, fence);

if (!IS_ERR_OR_NULL(fence)) {
/* Drop for original kref_init of the fence */
dma_fence_put(fence);

r = dma_fence_add_callback(fence, &sched_job->cb,
               drm_sched_job_done_cb);

      ^ UAF?!?



Unsolvable Problems

Scheduler pushes jobs to GPU with run_job(). Once 
Scheduler is done with the job, it frees it with 
free_job().

Consequence: Scheduler de facto responsible for job 
lifetime. But the driver allocates the jobs…

free_job() is bad because of

● potential races with driver
● potential memory leaks
● more work to implement

Also, it’s unnecessary: The Scheduler should just be 
a queue for jobs.
(Idea: Christian König (AMD))

10

GPU Scheduler

run_job()

free_job()

job

job

Driver

Driver callbacks



Non-Scheduling 
“Scheduler”

Many GPUs don’t have hardware rings 
anymore, but an arbitrary number of 
firmware rings.

Rework by Matthew Brost (Intel) in 
2023: Allow a 1:1 entity:scheduler 
relationship so drm_sched is usable 
with firmware rings.

Back then seemed like a good idea, 
but:

Scheduler now is not a scheduler 
anymore (for many drivers).

11

GPU

Firmware Ring

Firmware Ring

Firmware Ring

Scheduler

Scheduler

Scheduler

Entity

Entity

Entity

Scheduling?

   …       …       …



DRM Jobqueue

struct Jobqueue

U
se

rs
pa

ce

ioctl

Ownership transfer

drm_syncobj

Kernelspace

Driver Jobqueue
GPU

signals (e.g., through hardware interrupt)

refcounted

12

done_fence

Firmware Ring

job

job
job

job

dma_fence

wait()



Idea

13

● New hardware / drivers do firmware scheduling:
Nova, Tyr, Asahi, …

● We just need a “job queue”, not a “scheduler”
● A job queue can

○ leave drm_sched’s legacy problems behind
○ leave unnecessary features behind (red-black-tree for scheduling, job-resubmits on timeout, 

entities, …)
○ take lessons from 10 years of drm_sched



Programming Language: Rust

Why Rust?

● Nova, Tyr, Asahi are written in Rust already
● Rust can help with drm_sched-like problems: UAFs, refcounting, clear 

ownership rules
● Strong type system can prevent drivers from misusing APIs (e.g., touching 

internal lists)

Without a (Rust) Jobqueue, those drivers would need Rust abstractions on top of 
the “broken” drm_sched.

14



Functions and
Driver Callbacks

set_dependency() specifies a 
DmaFence the Jobqueue has to wait 
to get signalled before running that job. 

Driver creates a job and submits it 
through submit_job(). This transfers 
ownership to the Jobqueue.

Once it’s time, Jobqueue calls driver’s 
run_job() callback, transfering the 
ownership back.

In case, Jobqueue instructs the driver 
to take appropriate timeout actions 
through timeout().

DrmJobqueue

submit_job()
Ownership transfer

run_job()

timeout()

Ownership transfer

set_dependency(DmaFence)

15

job

job

job



Advertisement

Workshops

● GPU Recovery:  30 Sep 2025, 11:25
● GPU Scheduler:   1 Oct  2025, 14:05

16



Summary

● drm_sched accumulated many problems over 10 years
● Some are solvable
● Some aren’t with reasonable effort (object lifetimes, locking?)
● Many drivers just need a job queue, not a scheduler
● DRM Jobqueue in Rust: successor only for firmware scheduling
● Drivers are accessing API internals…

Many thanks to:
● Danilo Krummrich
● the scheduler contributors
● the XDC organizers

17



Appendix (Not part of talk)

18



Distant Future
Rust can expose C-ABI functions.

Hypothetically, existing C drivers with 
firmware scheduling could be ported 
from drm_sched to drm_jobqueue.

Benefits:

● Fewer legacy problems
● drm_sched could focus more on 

hardware scheduling.

19

DRM Jobqueue
(Rust)

C ABI

Driver
(C)



Lack of Documentation

20

/**
 * drm_sched_start - recover jobs after a reset
 *
 * @sched: scheduler instance
 * @full_recovery: proceed with complete sched restart
 *
 */
void drm_sched_start(struct drm_gpu_scheduler *sched, bool full_recovery)

/**
 * drm_sched_wqueue_start - start scheduler submission
 *
 * @sched: scheduler instance
 */
void drm_sched_wqueue_start(struct drm_gpu_scheduler *sched)

Plot twist: These functions aren’t necessary to start the scheduler during driver init. Only 
needed for GPU resets.
The actual “start function” is not called “_start”: drm_sched_init()



Lifetime Issues

21

Entities must not live longer than the 
Scheduler.

This rule “is in the code” and was 
clearly intended by drm_sched’s 
designers, but was neither 
documented, nor enforced in DRM.

Some drivers seem(ed?) to have 
outliving entities.

21

GPU

ringScheduler

Entity

1. Teardown      2. Teardown

Entity

Entity



22

void drm_sched_fini(struct drm_gpu_scheduler *sched)
{

struct drm_sched_entity *s_entity;
int i;

drm_sched_wqueue_stop(sched);

for (i = DRM_SCHED_PRIORITY_KERNEL; i < sched->num_rqs; i++) {
    struct drm_sched_rq *rq = sched->sched_rq[i];

    spin_lock(&rq->lock);
    list_for_each_entry(s_entity, &rq->entities, list)

        /*
         * Prevents reinsertion and marks job_queue as idle,
         * it will be removed from the rq in drm_sched_entity_fini()
         * eventually
         */

!!!ENTITY LOCK IS MISSING!!!
        s_entity->stopped = true;

    spin_unlock(&rq->lock);
    kfree(sched->sched_rq[i]);
}

. . .

void drm_sched_entity_push_job(struct drm_sched_job *sched_job)
{

[...]

/* first job wakes up scheduler */
if (first) {
    struct drm_gpu_scheduler *sched;
    struct drm_sched_rq *rq;

    /* Add the entity to the run queue */
    spin_lock(&entity->lock);
    if (entity->stopped) {

        spin_unlock(&entity->lock);

        DRM_ERROR("Trying to push to a killed entity\n");
        return;

    }

    rq = entity->rq;
    sched = rq->sched;

    spin_lock(&rq->lock);
    drm_sched_rq_add_entity(rq, entity);

. . .

A driver programmer was working around race conditions in a driver.
Apparently, the driver violated (violates?) the (undocumented) rule of entities having to be torn down before their scheduler.

That driver problem was addressed in drm_sched_fini() – but a lock was forgotten (*cough cough*).  It’s still broken:
● It’s still racy because a lock is missing
● The lock cannot be taken because that would lead to lock-inversion ⇒ deadlock
● If the driver would follow the life time rules, no locks in drm_sched_fini() were necessary in the first place

That’s one of the hard-to-solve scheduler problems. Which drivers follow the rules? Check them all, repair the broken ones, then 
remove that workaround from drm_sched_fini().



General Code Problems

One example: problematic lock 
names

Solved by Tvrtko Ursulin (Igalia) 
(f93126f5d559)

23

spin_lock(&entity->rq_lock);
spin_lock(&entity->rq->lock);



Timeouts

24

jobjobjobjob

jobjobjobjob

jobjobjobjob

GPU

ring 0

jobjobjob

timeout

N entities

Broken while(true) job 
blocks ring 0 forever

Scheduler must guarantee forward 
progress.

Problem: Linux kernel is not in charge  
of the “programs”. All controlled by 
userspace.

Scheduler can’t just cancel the broken 
job on the GPU.

GPU needs to be reset, killing all 
“innocent” jobs.

Innocent jobs on ring 1, served by a 
different scheduler (not depicted), get 
killed, too.

GPU Scheduler

jobjob

ring 1



Timeouts

25

jobjobjobjob

jobjobjobjob

jobjobjobjob

GPU

ring 0

N entities

GPU got reset

1. Stop the scheduler.
2. Reset the GPU
3. Find the entity the guilty job 

belongs to.
4. Kill that entity. That will affect 

the associated userspace party.

GPU Scheduler

ring 1



Timeouts

26

jobjobjobjob

jobjobjobjob

GPU

ring 0

N entities1. Start the scheduler again
2. Ideally resubmit other “innocent” 

jobs that died on the GPU when it 
was reset.

Problems:

● Timeout handling is very 
complicated.

● Racy, can trigger false positives: 
Scheduler indicates timeout, but 
GPU load was just very high etc.

● There is no clear solution for 
resubmitting jobs: 
drm_sched_resubmit_jobs() 
currently deprecated).

job

GPU Scheduler

timeout
jobjob

ring 1


