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VM - A process’s virtual memory space

•One per drm device file open() – typically one per process
• Plus some internal ones (dpu, gmu, etc)

•Kernel managed – kernel assigns iova for GEM obj mapped in VM
• Legacy userspace
• Also kernel internal VMs

•User managed – opt-in for userspace to manage the VM via 
VM_BIND
• Must opt in before first GEM obj is mapped

•Data structure: msm_gem_vm extends drm_gpuvm
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VMA (aka VA) – Virtual Memory Area

•Represents pages mapped in a VM
• “a contiguous range of virtual addresses that have the same permission flags, and are backed 

by the same object”

•Can be backed by ranges of a GEM obj (BO)
• A GEM obj can back multiple VMAs in a VM

•Or NULL mappings backed by PRR page
• Partially Resident Region
• Reads – return zero
• Writes – dropped

•Data structure: msm_gem_vma extends drm_gpuva
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VM_BIND submitqueue

•Normal submitqueue is for SUBMIT ioctls (cmd execution)

•VM_BIND submitqueue is new for VM_BIND ioctls

•Userspace can create as many as it wants
• Typically one for vk sparse queue
• And one for internal use

•Synchronization
• Ops enqueued on a submitqueue happen in FIFO order
• Can use fence fd’s and/or syncobjs for cross-queue synchronization
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VM_BIND ops

•VM_BIND ioctl contains 1 or more ops:
• UNMAP / MAP / MAP_NULL

•MAP op takes a GEM handle + offset into that GEM obj

•All take an iova + range

•drm_gpuvm translates ops into discrete steps for creating/destroying VMAs
• And corresponding pgtable updates
• If an op overlaps an existing (or earlier) VMA, it can split (REMAP) or tear down (UNMAP) the 

existing VMA



6

VM_BIND ops → steps

a

b

existing

New MAP

result a1 b a2

→

1. REMAP step
• Split ‘a’ into prev ‘a1’ and 

next ‘a2’ keeping the 
existing pgtable entries

• Unmap a hole for ‘b’

2. MAP step
• Insert new pgtable entries 

for ‘b’
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drm_gpuvm conversion

•Replaces previous internal tracking of VMs and VMAs
• Old scheme could only handle full GEM obj maps
• Only one VMA per GEM obj per VM

•Hard vs Soft reference on GEM obj held by VMA
• Previously the VMA implicitly was torn down when GEM obj freed
• Avoids map/unmap on ever pageflip

• But with drm_gpuvm, the VMA (vm_bo) holds a hard ref to GEM obj

• Solution: deferred fb unpin!
• As long as userspace holds some sort of handle to a GEM obj, defer unpin from the kms VM
• fb->prepare() and fb->cleanup() take/drop obj->vma_ref
• GEM handles and dma_buf fd’s hold an extra ref to obj->vma_ref
• Unmap from kms->vm deferred until obj->vma_ref drops to zero
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drm_gpuvm conversion – locking order

•GEM obj lock vs VM lock (vm->r_obj)
• To iterate VMs an obj is bound in, need to acquire obj lock first
• To iterate/modify a VM, need to acquire VM lock first

•Solution: drm_exec!
• Basically, a convenient wrapper for ww_acquire_ctx
• Handles the deadlock/backoff/retry loop in a straightforward way
• msm_gem_lock_vm_and_obj() for simple cases
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All about preallocation!

•Shrinker vs. fence signaling path
• Memory allocations can recurse into shrinker
• Shrinker may need to wait on fences in order to reclaim memory
• Ergo, allocations in fence signaling path can deadlock!

•Solution pt1: Bookkeeping done synchronously
• Only the actual pgtable updates are done asynchronously
• Allocating VMAs and updating VM is synchronous

•Solution pt2: Preallocate pgtable pages
• We don’t know the state of the pgtables when the update is applied
• We need to preallocate for worst case:
• 4 lvl pgtable, PAGE_SIZE mapping -> need to preallocate 3 pages!!

• Userspace can help by sorting ops by iova
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In-place remap

• To know which VMAs to capture in devcoredump we rely on a VMA flag
• MSM_VM_BIND_OP_DUMP

•Userspace sometimes needs to set this flag after after the VMA is created
• VK_EXT_device_generated_commands
• VK_EXT_descriptor_buffer
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Debugging: vm_log

• Improper sync between VM_BIND and exec queues can be hard to debug!

•Modparam: msm.vm_log_shift=N (max 8)
• Driver tracks ringbuffer of last 2N updates per VM
• Captured in devcoredump
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Thank  you
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