
Support for VM_BIND 
and sparse textures in 
Freedreno

Connor Abbott, Valve Corporation
Rob Clark, Qualcomm Technologies Inc.



Memory Management History

● "Memory management": how to allocate, free, and assign addresses to GPU memory
○ Buffer Objects (BOs) in the kernel and Mesa, VkDeviceMemory in the Vulkan API

○ BO Addresses are often called "iova"s (I/O Virtual Address)

○ Can also map BOs in userspace to share memory with the GPU

● Main complication/antagonist: buffer eviction
○ Need to evict unused GPU memory to swap when memory is tight

○ Critical for user experience on shipping Chromebooks!



Memory Management History: Softpin

● Userspace (turnip) has an address space per DRM FD

● Userspace allocates a GEM BO and then queries its address via GET_IOVA
● Kernel in charge of address space allocation

● Job submission requires a submit list
○ List of BOs used by the submission

○ Anything not used can be evicted

○ Submit commands/IBs reference the BO via its index in the submit list

○ Jobs take a reference on the BOs in the submit list

● But, various Vulkan features mean turnip cannot know which BOs are used!
○ Especially VK_KHR_buffer_device_address
○ So... put everything in the submit list!

○ Kernel iterates and locks every BO on every submit



Memory Management History: SET_IOVA

● Various usecases for userspace control of the address space:
○ Replayability in VK_KHR_buffer_device_address
○ Virtualization via VirtIO

● So: SET_IOVA ioctl

● Call it instead of GET_IOVA immediately after BO creation

● Simple to implement, right?!?
○ No :(



Memory Management History: Necromancy

● Deleting a BO does not actually delete 

it
○ The kernel takes a reference to the 

BO for each submit that uses it

○ The BO is not freed until each 

already-submitted job finishes

● There is no way to remove the BO 

from its iova without deleting it

● When we delete a BO, it may become a 

zombie:
○ Vulkan user thinks it is dead

○ But the kernel doesn't trust it and 

keeps it alive!



Memory Management History: Necromancy

● Maintain a list of zombie BOs

● When allocating a new BO:
○ Try allocating without a zombie

○ Check if any zombie BO can be freed

○ Finally, stall waiting for zombies to be 

freed

● Massive complexity!



There must be a better 
way...



In the meantime... 
sparse textures!



Sparse Textures

● Some games want to use absolutely massive textures

● Larger than what would fit into memory

● Swap parts in and out of memory

● Take advantage of image tiling



Sparse Textures

VkDeviceMemory VkDeviceMemory

VkImage



Sparse Textures

● Mipchains are supported
○ Miplevels smaller than the tile size are part of the miptail
○ Miptail must be allocated together

● What do unmapped tiles return?
○ With sparseResidencyStrict: must return 0



Sparse Textures

● Earlier jobs must not see memory mapped afterwards

● Later jobs must see the mapped memory

● Mapping must be done on the device timeline!

GPU Frame 0

Remap 
image

GPU Frame 1 GPU Frame 2

CPU

GPU



Sparse Textures

● New queue submission command: vkQueueBindSparse()
● Normally executed on the CPU

● However, on the critical path between submits
○ Taking too long stalls the GPU!

● Maps and unmaps image tiles

● Also supports sparse buffers
● The only way to map and unmap sparse images/buffers



Enter... VM_BIND!



Sparse Textures on Adreno

● Standard tile size: 64K bytes
○ Size in pixels defined by Vulkan & D3D specs

● Largest native tile is the macrotile: 4K bytes

● How to implement 64K standard sparse tiles?

● Fake it till you make it!



Sparse Textures on Adreno

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VkDeviceMemory

VkImage



Sparse Textures on Adreno

● Have to deal with bank swizzling
○ Swaps the macrotile order within a row

○ Deals with DDR bank access conflicts

● Have to deal with partial tiles


