
Cooperative Matrix in NVK

Karol Herbst, Red Hat

Sep 30, 2025



NVK support

• Int8, fp16, fp32
• All hw supported sizes (e.g. 16x8x32,16x8x16)
• CUDA documentation is pretty helpful



Layout: int8



Layout: fp16, fp32, int32



Performance

• Micro benchmark: vk cooperative matrix perf
• Initially 20% perf compared to Nvidia
• Up to 70% on main
• Up to 92% on devel branch

https://github.com/jeffbolznv/vk_cooperative_matrix_perf


LDSM

• Quads load consecutive 128 bits into GPR, 32 per invocation
• Can load 1, 2 or 4 groups of 128 bits
• Address taken from invocation quad id + 8 ∗ group
• LDSM.X2 R4 [R1 + 0x1200]

• Invocation 0 (quad 0) loads Invocation 0’s R1 + 0x1200 + 0x0 into R4
• Invocation 0 (quad 0) loads Invocation 8’s R1 + 0x1200 + 0x0 into R5
• ...
• Invocation 9 (quad 2) loads Invocation 2’s R1 + 0x1200 + 0x4 into R4
• ...

• No idea if useful for anything else



Occupancy

• Registers and shared memory shared between workgroups
• Shared memory config limits concurrency of workgroups
• E.g. ran 1 of 2 possible workgroups in bechmarks
• !37135

• Phomes benchmarked this MR:
• Lego Builders Journey 22 → 28 fps
• Atomic heart 40 → 48 fps
• Hitman 3 benchmark 83 → 91 fps
• Smaller gains in various other games

• +100% perf in vk cooperative matrix perf

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/37135


Memory barriers

• MEMBAR instruction
• Used .GPU scope → slow
• Use .CTA instead → fast
• +50% perf in vk cooperative matrix perf



Address calculation

• Load/Stores use GPR form only
• hardware can do: [GPR.stride + UGPR + offset]

• stride: x1, x4, x8, x16 (shared memory only)
• offset: 24 bit signed, unsigned if RZ + URZ
• GPR can be 32 bits if UGPR is 64 bits

• Range analysis + nir opt offset
• +5% perf in vk cooperative matrix perf
• !36113

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/36113

	NVK support
	Layout: int8
	Layout: fp16, fp32, int32
	Performance
	LDSM
	Occupancy
	Memory barriers
	Address calculation

