
KMS offloading in KWin

 2

Who am I?

● Xaver Hugl
● Work at Techpaladin LLC
● Work on

● KDE, specifically KWin
● Wayland Protocols
● Xwayland, Mesa, Linux, wherever is needed for KWin stuff

 3

KMS: important bits

● Framebuffers
● Planes

● Primary
● Cursor
● Overlay

● Crtcs
● Connectors

 4

Legacy Modesetting

● Individual ioctl for everything!
● Setting a mode on a CRTC
● Setting a buffer on a CRTC
● Setting the cursor image
● Setting the cursor position
● Setting a 1D “gamma” LUT on a CRTC

 5

Atomic Modesetting

● Exposes planes, crtcs and connectors
● Each object has a list of properties
● Properties are changed with the ATOMIC ioctl

● List of properties with the values you’re setting

● TEST_ONLY flag!

 6

KWin in 2020

● Legacy and atomic modesetting support
● Only used the functionality of legacy modesetting

● Set a buffer on the primary plane
● Set the cursor using the legacy ioctl!

● KMS offloading: Night light with the “gamma” LUT

 7

Direct scanout

● Works with unobstructed fullscreen windows
● Instead of compositing on the GPU, directly use application

buffers for scanout!
● Complication: Buffers need to be suitable for scanout

● Wayland protocol addition: dmabuf feedback

 8

Hardware rotation

● Rotation in KWin at that point: render into offscreen buffer, then
rotate it with a second shader pass

● Plane “rotation” property
● Kernel bug!
● Legacy cursor ioctl worked, but caused atomic commit to fail! →

Port cursor to atomic + software fallback
● Later on: Fixed the scene to rotate during compositing

 9

Rotation and scaling for direct scanout

● Game or video with non-native resolution or mismatched rotation
● Plane properties:

● rotation
● SRC_X, SRC_Y, SRC_W, SRC_H
● CRTC_X, CRTC_Y, CRTC_W, CRTC_H

 10

Direct scanout for video

● Needed to change renderer to import YUV buffers
● COLOR_ENCODING and COLOR_RANGE properties to describe

YUV properties
● NV12 and P010 supported right now, still need to expand support

to other formats
● Special casing for black background

 11

HDR and color management

● Initial implementation in 2023: Linear blending for “correctness”
● Done with an ICC profile or HDR enabled
● Rendering in a 16 bits per color float shadow buffer
● Fullscreen copy to the output swapchain with a second shader pass

● Performance and efficiency suffered
● Solution:

● Instead of linear, use gamma 2.2 → 10 bits per color is enough
● With HDR, use KMS gamma LUT to convert gamma 2.2 to PQ

 12

ICC profiles

● Contain nearly arbitrary transformations
● Too complicated for KMS... unless you dumb it down
● Turn every profile into matrix+shaper

● Apply matrix in normal compositing pass
● Apply shaper in KMS “gamma” LUT

● Setting: “prefer efficiency” vs. “prefer accuracy”

 13

Direct scanout again: Color offloading

● CRTC provides up to three color operations:
● DEGAMMA_LUT (1D LUT)
● CTM (3x3 matrix)
● GAMMA_LUT (1D LUT)

● Can be used for direct scanout…

 14

Direct scanout again: Color offloading

● CRTC provides up to three color operations:
● DEGAMMA_LUT (1D LUT)
● CTM (3x3 matrix)
● GAMMA_LUT (1D LUT)

● Can be used for direct scanout… or so I thought
● Nvidia: degamma doesn’t apply to the cursor
● Intel: degamma sometimes has terrible resolution
● AMD: glitches when changing the LUTs

 15

More than fullscreen direct scanout

● KMS supports multiple plane types per CRTC, we only use two:
● Primary
● Cursor

● Preparations for overlay planes:
● Backend API to expose the overlay planes
● Repaint scheduling
● Scene refactors
● Treat the cursor like an overlay too

 16

Overlay plane strategy

● Drm backend provides overlays (only on single display setups)
● Scene picks up to n items:

● Not occluded
● Update quickly
● If there’s too many, no overlays get chosen!

● Compositor assigns them to planes
● One atomic test for primary+cursor+overlays

● If that fails, one atomic test for primary+cursor
● If even that fails, fall back to only the primary plane

 17

Problems with overlays

● amdgpu sometimes takes ages for atomic tests
● With CPU load, I saw it taking 130ms once!

● amdgpu has pageflip timeouts on my laptop
● nvidia-drm causes system freezes
● i915 seems to work fine
● For now, only enabled in development versions of Kwin
● Set KWIN_USE_OVERLAYS=1 environment variable to enable

overlay usage in Plasma 6.5

 18

Underlay strategy

● Overlays go above the composited scene, underlays go below it
● Big advantages:

● Underlays can have other things on top of them, like subtitles!
● Underlays can also have compositor-side rounded corners

● Implementation:
● Compositor paints a transparent hole into the scene, where the item

would normally be
● Only works in Plasma 6.5 if overlay plane supports zpos < primary zpos
● Putting scene on overlay plane instead will be in Plasma 6.6

 19

Overlays with colors

● Lots of things prevent overlay usage, like night light, color profiles,
HDR, tonemapping

● New COLOR_PIPELINE API will fix it, allows mapping KWin’s color
operations to hardware capabilities

● KWin implementation is waiting for the kernel side, please merge
it already!

 20

What’s next?

● Make use of this in applications!
● Pass hardware decoded video buffers to compositor directly
● Put stuff on Wayland subsurfaces

● Futher improve power usage with this
● Video playback on my laptop: 7.3W vs. 8.4W
● Optimize hardware decoding in applications and drivers
● Change the CPU power profile for video playback?

● Fix all the driver bugs pls.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

