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No need to fear weird movie formats
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Existing YUV Formats
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YUV, YCbCr, 4:2:2, and all that
● YUV historically referred to a specific way of encoding color 

for broadcast television
–  Y is the luminance (black & white), U and V encode color
– These days “YUV” is used generically for luma + chroma representations

● YCbCr (or Y’CbCr) is a digital representation
– Various specific standards for converting from RGB to YCbCr: ITU-R BT.601, ITU-R 

BT.709, SMTPE 240M, etc.

–

–
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Subsampling
● Eyes tend to be less sensitive to chroma than luma

● So subsample chroma to reduce storage & bandwidth

● Terminology: J:a:b, where J is reference width (typically 4), a 

is number of chroma samples horizontally, b is factor for next 

line (usually same as a, or 0)
–
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Common Subsampling Formats
Y′ Cb+Cr Y′CbCr

4:4:4

4:2:2

4:2:0

4:1:1
By Mackenziemacaroni - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=147346822
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Components in planes
● Interleaved ● Semi-planar

● Planar
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Existing Mesa Formats
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Mesa Formats
● Mesa can use YUV formats for textures

– May be imported as “External” textures from video decode HW
– Or video decode could be done in software or in custom shaders

● Much of what we say here will also apply to RGB textures too 

(or compressed textures)
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YUV Formats Supported by Mesa
● Single Plane, Two Planes (Y and UV subsampled), or Three 

Planes (Y, U, V, possibly with subsampling)
● 4:4:4, 4:2:2, and 4:2:0 variants
● Components:

–  8 bit and 10 bit are common
– 12 and 16 bits per component are also seen

● Various ways to tile and interleave the components
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Existing YUV Formats
● Around 44 YUV related formats in Mesa now, including:

– A8Y8U8V8_444, Y8_U8_V8_444, etc.
– Y8U8Y8V8_422, U8Y8V8Y8_422, etc.
– Y8_U8V8_420, Y10_U10V10_420, etc.

● Some of these have aliases reflecting common usage
– E.g. NV12, aka Y8_U8V8_420_UNORM



12

Adding New Formats to 
Mesa
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New FourCC code (if necessary) 

● FourCCs are 4 byte identifiers consisting of 4 ASCII 

characters and indicating the overall pixel format, e.g. “YU08” 

== 0x30385559 
● If a new one is necessary, add it to drm-uapi/drm_fourcc.h
● Also need to update the kernel

– Upstreaming kernel patches can take a while
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src/util/format/u_format.yaml
Entries look like:

- name: Y8_U8V8_420_UNORM
  alias: NV12
  layout: planar2
  colorspace: YUV
  block: {width: 1, height: 1, depth: 1}
  channels: []
  swizzles: [X, Y, Z, W]
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src/util/format/u_format.yaml
Fields to fill out:

● Name: group components together by plane
● Nowadays we try to include subsampling

● Alias (e.g. common FOURCC)
● Layout (often “subsampled” or “planar2” for YUV)
● Colorspace (may need both RGB and YUV versions)
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src/util/format/u_format.yaml 
Continued

● Block: size is based on access patterns
– 1x1 for if individual texel elements can be accessed
–  4x1 for 10 bits where 4 texels are packed in 5 bytes

● Channels (bits per channel, usually UN8 or UN10)
● Swizzle



17

src/util/format/u_format.yaml 

● Repeat for the RGB equivalent of the YUV format, if 

necessary
– This usually is: we’ll want to use the RGB version for 

texturing, with colorspace conversion in the shader
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Digression: RGB and YUV
● For each YUV format we typically have an RGB equivalent, 

used to access the raw component data
– E.g. for Y8_U8V8_420_UNORM we have R8_G8B8_420_UNORM, and so on

● Color space conversion is done in the shader this way
– Can get precise conversion coefficients, which often isn’t possible in HW
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src/util/format/u_format_table.py 

● Add the new format(s) to the noaccess_formats list
● If you skip this step, you will have to provide conversion 

functions in src/util/format/u_format_yuv.c
–  Usually we don’t bother with this, if the format is included 

for hardware reasons
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DRI Considerations 
● dri2_format_mapping_table indicates when we can use an 

RGB format to support a YUV one
● dri_create_image_from_winsys checks this; if the HW does not 

directly support sampling from YUV (common!) we need to 

know the RGB equivalent
– Even if HW supports some YUV → RGB, it probably doesn’t 

support all the variations 
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YUV Conversion code in shader 

● Texture loading and conversion is generated in 

src/compiler/nir/nir_lower_tex.c
– Existing code can handle most situations
– Driven by external sampler key set up by state tracker
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State tracker updates 

● st_program.h: st_get_external_sampler_key sets up fields to 

describe texture lowering
● st_cb_eglimage.c:

– lower YUV to equivalent RGB in is_format_supported()
– Set up texture object in st_bind_egl_image()
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State tracker updates (cont’d)

● st_atom_texture.c: st_get_sampler_views() needs to set up 

views for additional planes
● Similarly for update_shader_samplers() in st_atom_sampler.c
● Also update st_get_sampler_view_format() in 

st_sampler_view.c, if necessary
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Testing
(something always goes wrong)
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Kmscube
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Kmscube

● Relatively easy to add new formats
● I have a fork that also allows modifiers to be specified

– https://gitlab.freedesktop.org/ericsmith/kmscube

– nv15_nv20_p010 branch

https://gitlab.freedesktop.org/ericsmith/kmscube
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Gstreamer

● Test with real movies
● Actually modifying gstreamer to handle new formats is a fairly 

big job
– But presumably someone is going to do it if the format is 

interesting
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Thank you!



29

We are hiring
col.la/careers

http://col.la/careers
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