
1

Supporting New YUV Formats in Mesa

Eric Smith

XDC 2025

2

No need to fear weird movie formats

3

Existing YUV Formats

4

YUV, YCbCr, 4:2:2, and all that
● YUV historically referred to a specific way of encoding color

for broadcast television
– Y is the luminance (black & white), U and V encode color
– These days “YUV” is used generically for luma + chroma representations

● YCbCr (or Y’CbCr) is a digital representation
– Various specific standards for converting from RGB to YCbCr: ITU-R BT.601, ITU-R

BT.709, SMTPE 240M, etc.

–

–

5

Subsampling
● Eyes tend to be less sensitive to chroma than luma

● So subsample chroma to reduce storage & bandwidth

● Terminology: J:a:b, where J is reference width (typically 4), a

is number of chroma samples horizontally, b is factor for next

line (usually same as a, or 0)
–

6

Common Subsampling Formats
Y′ Cb+Cr Y′CbCr

4:4:4

4:2:2

4:2:0

4:1:1
By Mackenziemacaroni - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=147346822

7

Components in planes
● Interleaved ● Semi-planar

● Planar

8

Existing Mesa Formats

9

Mesa Formats
● Mesa can use YUV formats for textures

– May be imported as “External” textures from video decode HW
– Or video decode could be done in software or in custom shaders

● Much of what we say here will also apply to RGB textures too

(or compressed textures)

10

YUV Formats Supported by Mesa
● Single Plane, Two Planes (Y and UV subsampled), or Three

Planes (Y, U, V, possibly with subsampling)
● 4:4:4, 4:2:2, and 4:2:0 variants
● Components:

– 8 bit and 10 bit are common
– 12 and 16 bits per component are also seen

● Various ways to tile and interleave the components

11

Existing YUV Formats
● Around 44 YUV related formats in Mesa now, including:

– A8Y8U8V8_444, Y8_U8_V8_444, etc.
– Y8U8Y8V8_422, U8Y8V8Y8_422, etc.
– Y8_U8V8_420, Y10_U10V10_420, etc.

● Some of these have aliases reflecting common usage
– E.g. NV12, aka Y8_U8V8_420_UNORM

12

Adding New Formats to
Mesa

13

New FourCC code (if necessary)

● FourCCs are 4 byte identifiers consisting of 4 ASCII

characters and indicating the overall pixel format, e.g. “YU08”

== 0x30385559
● If a new one is necessary, add it to drm-uapi/drm_fourcc.h
● Also need to update the kernel

– Upstreaming kernel patches can take a while

14

src/util/format/u_format.yaml
Entries look like:

- name: Y8_U8V8_420_UNORM
 alias: NV12
 layout: planar2
 colorspace: YUV
 block: {width: 1, height: 1, depth: 1}
 channels: []
 swizzles: [X, Y, Z, W]

15

src/util/format/u_format.yaml
Fields to fill out:

● Name: group components together by plane
● Nowadays we try to include subsampling

● Alias (e.g. common FOURCC)
● Layout (often “subsampled” or “planar2” for YUV)
● Colorspace (may need both RGB and YUV versions)

16

src/util/format/u_format.yaml
Continued

● Block: size is based on access patterns
– 1x1 for if individual texel elements can be accessed
– 4x1 for 10 bits where 4 texels are packed in 5 bytes

● Channels (bits per channel, usually UN8 or UN10)
● Swizzle

17

src/util/format/u_format.yaml

● Repeat for the RGB equivalent of the YUV format, if

necessary
– This usually is: we’ll want to use the RGB version for

texturing, with colorspace conversion in the shader

18

Digression: RGB and YUV
● For each YUV format we typically have an RGB equivalent,

used to access the raw component data
– E.g. for Y8_U8V8_420_UNORM we have R8_G8B8_420_UNORM, and so on

● Color space conversion is done in the shader this way
– Can get precise conversion coefficients, which often isn’t possible in HW

19

src/util/format/u_format_table.py

● Add the new format(s) to the noaccess_formats list
● If you skip this step, you will have to provide conversion

functions in src/util/format/u_format_yuv.c
– Usually we don’t bother with this, if the format is included

for hardware reasons

20

DRI Considerations
● dri2_format_mapping_table indicates when we can use an

RGB format to support a YUV one
● dri_create_image_from_winsys checks this; if the HW does not

directly support sampling from YUV (common!) we need to

know the RGB equivalent
– Even if HW supports some YUV → RGB, it probably doesn’t

support all the variations

21

YUV Conversion code in shader

● Texture loading and conversion is generated in

src/compiler/nir/nir_lower_tex.c
– Existing code can handle most situations
– Driven by external sampler key set up by state tracker

22

State tracker updates

● st_program.h: st_get_external_sampler_key sets up fields to

describe texture lowering
● st_cb_eglimage.c:

– lower YUV to equivalent RGB in is_format_supported()
– Set up texture object in st_bind_egl_image()

23

State tracker updates (cont’d)

● st_atom_texture.c: st_get_sampler_views() needs to set up

views for additional planes
● Similarly for update_shader_samplers() in st_atom_sampler.c
● Also update st_get_sampler_view_format() in

st_sampler_view.c, if necessary

24

Testing
(something always goes wrong)

25

Kmscube

26

Kmscube

● Relatively easy to add new formats
● I have a fork that also allows modifiers to be specified

– https://gitlab.freedesktop.org/ericsmith/kmscube

– nv15_nv20_p010 branch

https://gitlab.freedesktop.org/ericsmith/kmscube

27

Gstreamer

● Test with real movies
● Actually modifying gstreamer to handle new formats is a fairly

big job
– But presumably someone is going to do it if the format is

interesting

28

Thank you!

29

We are hiring
col.la/careers

http://col.la/careers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

